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Abstract
Uncovering security vulnerabilities in software is a key for
operating secure systems. Unfortunately, only some secu-
rity flaws can be detected automatically and the vast ma-
jority of vulnerabilities is still identified by tedious auditing
of source code. In this paper, we strive to improve this sit-
uation by accelerating the process of manual auditing. We
introduce Chucky, a method to expose missing checks in
source code. Many vulnerabilities result from insufficient in-
put validation and thus omitted or false checks provide valu-
able clues for finding security flaws. Our method proceeds by
statically tainting source code and identifying anomalous or
missing conditions linked to security-critical objects. In an
empirical evaluation with five popular open-source projects,
Chucky is able to accurately identify artificial and real miss-
ing checks, which ultimately enables us to uncover 12 previ-
ously unknown vulnerabilities in two of the projects (Pidgin
and LibTIFF).

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; K.6.5 [Management of Computing and Infor-
mation Systems]: Security and Protection

Keywords
Vulnerabilities; Static Analysis; Anomaly Detection

1. INTRODUCTION
Detecting and eliminating vulnerabilities in software is a

key for operating secure computer systems. The slightest
flaw in the design or implementation of software can severely
undermine its security and make it an easy victim for attack-
ers. Several security incidents of the last years are actually
the result of critical vulnerabilities in software, for example,
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the attacks conducted by Stuxnet [8], the drive-by download
attacks exploiting Java flaws [24] and the recently discovered
UPNP flaws in millions of home routers [21].

Finding vulnerabilities in software is a classic problem of
computer security. Unfortunately, an automatic approach
for finding arbitrary vulnerabilities cannot exist. Accord-
ing to Rice’s theorem, checking whether a program contains
vulnerable code using another program is undecidable in the
general case [12].

As a result of this limitation, security research has focused
on discovering specific types of vulnerabilities. For example,
the usage of potentially dangerous functions, such as strcpy

and strcat, can be easily detected by scanning for these func-
tions [e.g., 3, 36, 39]. Similarly, analysis techniques such as
fuzzing [e.g., 22, 33] and taint analysis [e.g., 23, 26] can help
in spotting insecure flows of data in software. Sophisticated
methods using symbolic execution can even discover flaws
in unusual code branches [e.g., 1, 9, 37]. Many of these ap-
proaches, however, are hard to operate effectively in practice
and opaque to a security analyst [see 11, 14]. Consequently,
the vast majority of security flaws is still discovered by te-
dious and time-consuming manual analysis.

In this paper, we strive to improve this situation by ac-
celerating the process of manual auditing. To this end, we
introduce Chucky, a method for automatically identifying
missing checks in source code. Many types of vulnerabilities
result from insufficient validation of input and thus omitted
checks provide valuable clues for finding security flaws. For
example, if the length of data copied to a buffer is checked
in 9 out of 10 functions in a program, it is evident that the
function missing the check is a prime candidate for secu-
rity auditing. To identify such functions, Chucky statically
taints the source code and detects anomalous or missing
conditions linked to security-critical objects, such as mem-
ory buffers. By comparing regular checks with missing ones,
Chucky is able to suggest correct conditions and potential
fixes to the analyst.

Our method operates independent of external information
and additional annotations, as for example used by the static
security checker Splint [7]. Instead we build on the assump-
tion that missing or faulty checks are rare events and the
majority of conditions imposed on security-critical objects
in a software project are correct. While this assumption is
satisfied for mature software projects, it does not hold true
in all cases. We discuss limitations of our approach in Sec-
tion 5 specifically.



We demonstrate the efficacy of our approach in a quali-
tative and quantitative evaluation, where we analyze miss-
ing checks in the code of the following popular open-source
projects: Firefox, Linux, LibPNG, LibTIFF and Pidgin. For
all projects, Chucky is able to identify artificial and real
missing checks accurately with few false positives. This ac-
curacy ultimately enables us to identify 12 different previ-
ously unknown vulnerabilities in two of the projects, namely
Pidgin and LibTIFF.

In summary, we make the following contributions:

• Identification of missing checks. We introduce a
novel method for static analysis of source code that is
able to automatically identify missing checks for vul-
nerability discovery.

• Anomaly detection on conditions. Our method
embeds functions in a vector space, such that miss-
ing and unusual expressions in their conditions can be
identified automatically.

• Top-down and bottom-up analysis. Taint analysis
enables us to spot missing checks on untrusted input
sources (top-down) as well as when accessing security-
critical sinks (bottom-up).

• Suggestion of corrections. During auditing our
method is able to suggest potential fixes to an analyst
by highlighting differences between a missing check
and regular ones.

The rest of this paper is structured as follows: we re-
view missing-check vulnerabilities in Section 2 and introduce
Chucky in Section 3 along with technical details. We eval-
uate its ability to expose missing checks on real source code
in Section 4. Limitations and related work are discussed in
Section 5 and 6, respectively. Section 7 concludes the paper.

2. MISSING-CHECK VULNERABILITIES
Many critical classes of vulnerabilities in software are a

direct consequence of missing checks. This includes flaws in
access control, such as missing checks of user permissions, as
well as purely technical defects, such as buffer and integer
overflows resulting from missing range checks. The conse-
quences of these classes of vulnerabilities can be dramatic.
For example, in January 2013 a vulnerability in the Java
7 runtime caused by a missing check in an access control
component allowed attackers to install malware on millions
of hosts (CVE-2013-0422). Thus, finding missing checks is
crucial for securing software and computer systems.

Throughout this paper, we adopt the terminology estab-
lished in the field of taint analysis for discussing missing
checks [see 29]. In taint analysis, data entering a program
via a source is monitored as it propagates to a sink, possibly
undergoing validation in the process. Using this terminology
we can discriminate two types of security checks in source
code, both of which Chucky is designed to analyze.

• Checks implementing security logic. Programs
implementing access control, such as Web applications
or operating system kernels, perform security checks
to restrict access to resources. Methods to detect spe-
cific types of these flaws have been proposed for Web
applications [31] as well as Linux kernel code [34]. In
this setting, parameters or global variables act as input

1 int foo(char *user, char *str, size_t n)
2 {
3 char buf[BUF_SIZE], *ar;
4 size_t len = strlen(str);
5

6 if(!is_privileged(user))
7 return ERROR;
8

9 if(len >= BUF_SIZE) return ERROR;
10 memcpy(buf, str, len);
11

12 ar = malloc(n);
13 if(!ar) return ERROR;
14

15 return process(ar, buf, len);
16 }

Figure 1: Exemplary security checks in a C function:
a check implementing security logic (line 6) and two
checks ensuring secure API usage (line 9 and 13).

sources, which need to be validated. As an example,
consider the first check in Figure 1, where the parame-
ter user is validated before allowing the remaining code
of the function to be executed.

• Checks ensuring secure API usage. Regardless of
security logic, checks to ensure secure operation of in-
ternal and external APIs are required. As an example,
consider the last two checks shown in Figure 1. To pro-
tect from buffer overflows, the first check validates the
variable len derived from the source strlen before it is
propagated to the sink memcpy. Moreover, the second
check validates the return value of the source malloc to
ensure that subsequent code does not cause a denial of
service condition by dereferencing a NULL-pointer.

Chucky is based on the key observation that sources
and sinks are usually employed many times within a code
base, each time requiring similar security checks to be im-
plemented. As a consequence, there often exist typical pat-
terns for checking data retrieved from sources or propagated
to sinks. If such patterns can be automatically inferred from
the code, it is possible to detect deviations from these pat-
terns and thereby spot potential vulnerabilities.

3. IDENTIFYING MISSING CHECKS
Exposing missing checks in source code poses two main

challenges: First, typical checks must be determined au-
tomatically by leveraging information scattered throughout
the code base. Second, any deviations from these checks
need to be detected and presented to the analyst while brows-
ing the code. Moreover, the analyst must be able to easily
comprehend how the method arrives at its results.

To address these problems, our method implements a five-
step procedure, which can be executed for each source and
sink referenced by a selected function. This procedure com-
bines techniques from static analysis and machine learning
to determine missing checks and provide supporting evi-
dence. The five steps are illustrated in Figure 2 and outlined
in the following:

1. Robust Parsing. Conditions, assignments and API
symbols are first extracted from a function’s source
code using a robust parser [20]. In particular, the
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void foo(int n) {
    ...
    x = malloc(n);
    if (x && n > 0)
        process(x, n);
    ...
}

void woo(int n) {
    ...
    malloc(...);
    ...
    process(...);
    ...
}

void boo(int n) {
    ...
    malloc(...);
    ...
    process(...);
    ...
}

void bar(int n) {
    ...
    malloc(...);
    ...
    process(...);
    ...
}

(4) Embedding of 
functions

(n > 0)

(x)

bar()

foo()
woo()

boo()

(5) Anomaly 
detection

(n > 0)

(x)

Missing check

Normality

Input source

void foo(int n) {
    ...
    x = malloc(n);
    if (x && n > 0)
        process(x, n);
    ...
}

(3) Lightweight
tainting

Figure 2: Overview of Chucky: (1) sources and sinks are identified, (2) functions with similar context are
grouped, (3) variables depending on the sources/sinks are tainted, (4) functions are embedded in a vector
space using tainted conditions, and (5) functions with anomalous or missing conditions are detected.

sources and sinks used in each of the functions are de-
termined. The remaining four steps are then executed
for each source or sink independently.

2. Neighborhood discovery. The necessity of a check
highly depends on the context code operates in. Our
method thus identifies functions in the code base oper-
ating in a similar context to that of the selected func-
tion using techniques inspired by natural language pro-
cessing (Section 3.2).

3. Lightweight tainting. To determine only those checks
associated with a given source or sink, lightweight taint-
ing is performed for the function under examination
and all its neighbors in top-down and bottom-up di-
rection (Section 3.3).

4. Embedding of functions. The selected function and
its neighbors are then embedded in a vector space using
the tainted conditions such that they can be analyzed
using machine learning techniques (Section 3.4).

5. Anomaly Detection. The embedding of functions
enables us to geometrically search for missing checks.
In particular, we compute a model of normality over
the functions, such that anomalous checks can be iden-
tified by large distances from this model (Section 3.5).

In the following sections, we describe these steps in more
detail and provide the necessary technical as well as theo-
retical background.

3.1 Robust Parsing
Reasoning about missing checks requires a deep under-

standing of program syntax. Chucky therefore begins by
parsing code using a robust parser for C/C++ developed
during our research. The parser is based on an island gram-
mar [see 20] for the parser generator ANTLR [25] and pro-
vides abstract syntax trees (ASTs) for all functions of a code
base even when declarations can only be resolved partially.
This allows Chucky to be directly employed without requir-
ing code to be compiled or a build environment to be config-
ured. To encourage more research in the area, we have made
our parser available as open-source software1. Chucky em-
ploys this parser to extract the following information from
each function.

1https://github.com/fabsx00/joern

• Sources and sinks. All function parameters, func-
tion calls as well as global and local variables are poten-
tial sources or sinks of information, each of which may
be tied to a unique set of conditions required for secure
operation. Chucky therefore begins by extracting all
sources and sinks from each function. The granularity
of the analysis is further increased by taking fields of
structures into account. As an example, consider Fig-
ure 3 where all sources and sinks of the function foo

are marked.

• API symbols. Additionally, we extract API symbols
as a prerequisite for neighborhood discovery (see Sec-
tion 3.2). All types used in parameter and local vari-
able declarations as well as the names of all functions
called are considered as API symbols.

• Assignments. Assignments describe the flow of in-
formation between variables, which we exploit to de-
termine conditions related to a sink by performing
lightweight tainting (see Section 3.3). For each assign-
ment, we store the subtree of the AST referring to the
left- and right-value of the assignment.

• Conditions. Ultimately, functions are compared in
terms of the conditions they impose when using a source
or sink (see Sections 3.4 and 3.5). As conditions, we
consider all expressions of control statements such as
those introduced by the keywords if, for or while as
well as those found in conditional expressions. To pro-
vide access to partial expressions, we store conditions
as references to corresponding subtrees of the AST
rather than as flat strings.

Upon completion of this step, patterns can be determined
for each of the extracted sources and sinks and analyzed for
missing checks, as explained in the following sections.

3.2 Neighborhood Discovery
Security checks are often highly context dependent. For

example, omitting checks on string operations may be per-
fectly acceptable when parsing configuration files, while pos-
ing a serious threat when processing network data. Chucky
accounts for this difference by only comparing the function
under examination to functions sharing a similar context.
This is achieved by identifying the neighborhood of the func-
tion, that is, related functions using similar API symbols.
The rationale behind this choice is that the combination of
interfaces used by a function is characteristic for the subsys-
tem it operates in as well as the functionality it implements.



1 int foo(char *user, char *str, size_t n)
2 {
3 char buf[BUF_SIZE], *ar;
4 size_t len = strlen(str);
5

6 if(!is_privileged(user))
7 return ERROR;
8

9 if(len >= BUF_SIZE) return ERROR;
10 memcpy(buf, str, len);
11

12 ar = malloc(n);
13 if(!ar) return ERROR;
14

15 return process(ar, buf, len);
16 }

Figure 3: C function with sources and sinks: All
parameters (line 1), global and local variables (lines
3,4 and 9) and function calls (line 4, 6, 10, 12 and
15) are marked for analysis.

For discovering these neighboring functions, we adapt the
classic bag-of-words model from natural language process-
ing that is commonly used to compare text documents [28].
Similar to the words in these documents, we represent each
function in the code base by the API symbols it contains. We
then map the functions to a vector space, whose dimensions
are associated with the frequencies of these symbols [see 41].
Functions using a similar API lie close to each other in this
vector space, whereas functions with different context are
separated by large distances.

Formally, we define a mapping φ from the set of all func-
tions X = {x1, . . . , xm} to R|A| where A is the set of all API
symbols contained in X. This mapping is given by

φ : X → R|A|, φ(x) 7→
(
I(x, a) · TFIDF(x, a,X)

)
a∈A

where I is an indicator function defined as

I(x, a) =

{
1 if x contains API symbol a

0 otherwise

and TFIDF(x, a,X) a standard weighting term from infor-
mation retrieval [28]. The rationale behind the use of this
term is to lower the impact of very frequently used API
symbols on the similarity of functions.

This geometric representation enables us to identify the
k-nearest neighbors N ⊂ X of the selected function x with
respect to the source or sink s. We determine this set N by
first extracting all functions of the code base that reference s.
We then calculate the cosine distance of their corresponding
vectors to φ(x) and finally select those k functions with the
smallest distance.

Note, that Chucky is not very sensitive to the choice
of the parameter k, as we demonstrate in Section 4, where
values between 10 and 30 provide good performance. As
a result of the neighborhood discovery, only the function
under examination and its neighbors need to be processed
in the following steps of the analysis.

3.3 Lightweight Tainting
Among the many checks present in a regular function,

only a subset is relevant for a chosen source or sink. An-
alyzing the function in terms of its use of a specific source
or sink therefore requires unrelated checks to be discarded
automatically. However, this selection of relevant checks is

user
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str

strlen

len bufmemcpy

ar

malloc n

process

arg

arg

arg

arg

arg

assign

arg arg

arg

arg

assign

Figure 4: Dependency graph for function foo. Nodes
reachable from memcpy are shaded, where the taint
propagation stops at function boundaries. Isolated
nodes are omitted.

not trivial, as it requires the flow of data between variables
to be taken into account.

To address this problem, Chucky performs lightweight
tainting of the code of the target function and all its neigh-
bors for each source or sink in two stages:

1. Dependency modelling. A directed graph is cre-
ated to model the dependencies between variables. The
nodes of the graph correspond to the identifiers used in
the function (i.e., sources and sinks), while the edges
reflect assignments between identifiers. Edges are also
added if identifiers are parameters of functions.

2. Taint propagation. Starting from the identifier cor-
responding to a selected source or sink, the graph is
traversed in top-down as well as bottom-up direction to
discover all related identifiers. The propagation stops
at function boundaries, that is, edges from parameters
to functions are not followed.

An example of a dependency graph for the function foo

from Figure 3 is shown in Figure 4. The identifier memcpy has
been picked as source/sink for the analysis. Three identi-
fiers are tainted (gray shading) including directly connected
nodes, such as len and buf, as well as indirectly linked nodes,
such as strlen.

Once the tainted identifiers for a function are known, we
examine its conditions (see Section 3.1) and remove a con-
dition if it does not reference at least one of the tainted
identifiers. We thus restrict the conditions analyzed in sub-
sequent steps only to those conditions related to the source
or sink under examination.

3.4 Embedding of Functions
In the last two steps, we leverage the information dis-

tributed across the function neighborhood to determine typ-
ical checks and deviations thereof using anomaly detection.
Similar to the technique for neighborhood discovery (Sec-
tion 3.2), this method for anomaly detection operates on
numerical vectors and thus the functions need to be again
embedded in a suitable vector space. We implement this
embedding as follows.
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Figure 5: Schematic depiction of embedding. Conditions related to the specified source/sink are extracted
from the abstract syntax tree and mapped to a vector space using their expressions.

Upon completion of the previous step, conditions related
to the source or sink s are known for each function. We pro-
ceed to extract all expressions (including sub-expressions)
contained in each of these conditions. The expressions then
undergo a simple normalization to account for small syntac-
tical differences in the formulation of checks. In detail, the
normalization consists of two transformations.

1. Removal of negations. Since Chucky does not ac-
count for the actions taken upon evaluation of an ex-
pression, negations are removed as the first step of
normalization. For the same reason, relational oper-
ators are replaced by the symbol $CMP. Furthermore,
numbers are replaced by $NUM since for example, the
expression x < 10 is equivalent to x < 1 + 9.

2. Normalization of arguments and return values
If the source or sink of interest is a function, its return
value is renamed to $RET while any variables directly
influencing its arguments are renamed to $ARG. This
allows return values and arguments of functions to be
compared regardless of the names of variables chosen.

Finally, the functions can be embedded in a vector space
by applying a mapping ϕ, which transforms functions into
numerical vectors. To represent each function by all normal-
ized expressions contained in its conditions, we define E to
be the set of all normalized expressions and ϕ as

ϕ : X → R|E|, ϕ(x) 7→
(
I(x, e)

)
e∈E

where I is an indicator function defined as

I(x, e) =

{
1 if x contains e in a condition

0 otherwise.

Note that while the total number of expressions contained
in the code base may be very large, the vast majority of
functions contains only few of these expressions. In practice,
this allows for memory efficient implementations using hash
maps or sorted arrays [27].

Figure 5 illustrates this process for the function foo from
Figure 1. The single condition related to the sink memcpy is
first determined and all sub-expressions are extracted and
normalized. Finally, the vectorial representation is obtained
by applying the mapping ϕ.

3.5 Anomaly Detection
Based on the embedding of functions, we are finally able

to determine missing checks geometrically. To this end, a
model of normality quantifying the importance of each ex-
pression contained in a check is derived from the embedded
neighbors. Measuring the distance to this model allows us

to determine checks that are present in most neighbors but
are missing in the examined function. This enables Chucky
to pinpoint the exact missing check and report its absence
to the analyst. Moreover, an anomaly score can be calcu-
lated, allowing particularly interesting code to be returned
to the analyst for immediate inspection. Mathematically,
this process is implemented as follows.

For each source or sink s used in a function x under
consideration, a model of normality is calculated based on
its neighbors N . Recalling that in the previous step, each
neighbor is mapped to a vector in the space spanned by the
expressions contained in its conditions, a natural choice for
this model is the center of mass of all embedded neighbor
vectors. The model µ ∈ R|E| is thus computed over all k
embedded neighbour functions as

µ =
1

|N |
∑
n∈N

ϕ(n)

Each coordinate of µ represents the fraction of the neighbors,
that contain a particular Boolean expression in its conditions
as a number between 0 and 1. For example, a score of 0.9
in the coordinate associated with the expression $RET $CMP

$NUM indicates that 90% the function’s neighbors check the
return value against a literal number while only 10% do not.

Identifying missing checks is now easy as it merely requires
assessing the difference between the embedded function vec-
tor ϕ(x) and the model of normality µ. To this end, we

calculate the distance vector d ∈ R|E| given by

d = µ− ϕ(x).

Each coordinate of the vector d is a value between -1 and
+1. Positive numbers denote Boolean expressions that are
checked by a fraction of neighbors but missing in the func-
tion under consideration x, i.e., missing checks. In contrast,
negative numbers denote expressions checked in x but not
present in any of its neighbors.

Finally, from the distance vector we compute an anomaly
score suitable to rank functions according to the likelihood
that it is omitting a check. We define this anomaly score for
a function x as

f(x) = ||µ− ϕ(x)||∞ = max
e∈E

(
µe − I(x, e)

)
that is, the anomaly score is given by the largest coefficient of
the vector d. Recalling that positive numbers denote missing
expressions, the rationale behind this choice is to rank func-
tions high if many neighbors contain an expression, which
is not present in the function of interest. Furthermore, the
maximum norm is chosen, because functions deviating from
its neighbors in a single concrete expression—while contain-
ing all other expressions—are usually more interesting than
functions differing from their neighbors entirely.



4. EMPIRICAL EVALUATION
We proceed to evaluate our method on the source code

of five popular software projects: Firefox, Linux, LibPNG,
LibTIFF and Pidgin. In particular, we are interested in
Chucky’s detection performance when tasked to identify
missing checks as well as its practical value in real source
code audits. We begin by conducting a controlled experi-
ment (Section 4.1) involving artificial as well as real missing
checks leading to vulnerabilities discovered in the past. Fi-
nally, we study our method’s ability to assist in the discov-
ery of previously unknown vulnerabilities by providing case
studies (Section 4.2).

4.1 Missing Check Detection
To evaluate the detection performance of Chucky, the

security history of each of the five projects is reviewed. In
each code base, we uncover cases where a security check
is present in many functions but omitted in others, thus
causing vulnerabilities.

In all but one case, these vulnerabilities are critical, al-
lowing an attacker to fully compromise the software. Addi-
tionally, we take care to choose samples involving different
cases of vulnerabilities, e.g., missing checks for security logic,
function arguments, function return values. In the following
we provide a detailed description of our dataset. Table 1
summarizes this information.

• Firefox. The JavaScript engine of the popular Web
browser Firefox (version 4.0) contains 5,649 functions
and 372,450 lines of code. A failure to check the num-
ber of arguments passed to native code implementa-
tions of JavaScript functions (i.e., the parameter argc)
leads to a use-after-free vulnerability (CVE-2010-3183).
Ten utility functions implementing array operations
perform the same security check to avoid this.

• Linux. The filesystem code of the Linux operating
system kernel (version 2.6.34.13) contains 19,178 func-
tions and 955,943 lines of code. A missing check before
setting an ACL allows to bypass file system permis-
sions (CVE-2010-2071). The check involves the pa-
rameter dentry and its structure field dentry->d_inode.
Eight functions of different filesystems implement a
corresponding security check correctly.

• LibPNG. The image processing library LibPNG (ver-
sion 1.2.44) contains 437 functions and 40,255 lines of
code. A missing check of the PNG chunk’s size (i.e.,
the parameter length) results in a memory corruption
(CVE-2011-2692). Nineteen functions processing PNG
chunks perform the same critical check to avoid this.

• LibTIFF. The image processing library LibTIFF (ver-
sion 3.9.4) contains 609 functions and 33,335 lines of
code. Missing checks of the length field of TIFF di-
rectory entries (i.e., the parameter dir and its field
dir->tdir_count) lead to two independent stack-based
buffer-overflows (CVE-2006-3459 and CVE-2010-2067).
Nine functions processing TIFF directory entries per-
form a security check to avoid this problem.

• Pidgin. The instant messaging library of the popular
instant messenger Pidgin (version 2.7.3) contains 7,390
functions and 332,762 lines of code. A missing check of
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Figure 6: Detection performance for the five
projects with neighborhoods of different size.

the return value of the internal base64-decoding rou-
tine purple_base64_decode leads to a denial-of-service
vulnerability (CVE-2010-3711). Eighteen functions pars-
ing network data in Pidgin perform a corresponding
security check correctly to avoid this.

For each code base we begin our evaluation by patching
the known vulnerabilities. We then proceed to create sev-
eral experiments in a round-robin fashion for each security
check, where we remove the check from one function while
leaving all other functions untouched. Vulnerabilities are
thus deliberately introduced in order to allow us to measure
our methods ability to identify them.

Chucky is then employed to rank functions by analyzing
their use of the source or sink requiring validation. Note
that while only those functions known to be vulnerable or
non-vulnerable are included in the ranking, the entire code
base is considered for neighborhood selection. The experi-
ment thus reflects the situation encountered in practice and
performs no simplifications.

These experiments allow us to assess our method’s ability
to rediscover those vulnerabilities reported to the projects
in the past but go one step further by exploring Chucky’s
capability to discover artificially introduced vulnerabilities.
In total, the dataset allows us to perform 64 experiments
independently (see last column of Table 1).



Project Component Vulnerability LOC # functions # with check
Firefox 4.0 JavaScript engine CVE-2010-3183 372450 5649 10
Linux 2.6.34.13 Filesystem code CVE-2010-2071 955943 19178 8
LibPNG 1.2.44 Entire library CVE-2011-2692 40255 473 19
LibTIFF 3.9.4 Entire library CVE-2010-2067 33335 609 9
Pidgin 2.7.3 Messaging CVE-2010-3711 332762 7390 18

Table 1: Overview of our dataset. For each project the missing-check vulnerability, the lines of code (LOC),
the number of functions and the number of functions involving the check is listed.

Figure 6(a) shows the ROC curves of our method averaged
over all projects for neigborhoods of different size k, where
the detection rate is plotted against the false-positive rate
for different thresholds. For low values of k, such as k =
5, already 50% of the missing checks can be detected with
few false positives. With increasing k, Chucky is able to
identify more missing conditions, where finally almost all
missing checks in the five code bases are detected with k =
20 at a detection rate of 96%.

We further investigate the effect of the number of neigh-
bors on the detection performance by generating individual
ROC curves for values of k between 1 and 100 using the Area
Under Curve (AUC) as a performance measure [2]. Fig-
ure 6(b) shows the results of this experiment. For k = 25
we attain perfect results across all code bases allowing all
vulnerabilities to be detected with no false positives. While
we do not assume that an optimal choice of k exists for ar-
bitrary code bases, for the projects under consideration, the
average number of functions operating in a similar context
thus seems to be around 25. For all further evaluations we
thus fix k to 25.

Moreover, we can observe that for those code bases where
APIs have been insecurely used (Firefox, LibPNG, LibTIFF
and Pidgin), the maximum performance is achieved when k
is chosen above a certain threshold. This confirms that in
these cases, the majority of functions employing the source
or sink perform the security check, thus making neighbor-
hood discovery rather dispensable. In the case of Linux,
where missing checks in security logic need to be identified,
the performance drops when k becomes too large. We ex-
amine this case in detail and find that the source dentry is
used many times across the code base while a security check
is only required in few cases. Neighborhood discovery thus
becomes essential in order to create a model of normality
only from functions that operate in a similar context.

This quantitative evaluation demonstrates the potential of
Chucky. All of the considered vulnerabilities are success-
fully identified by our method and would have been spot-
ted if Chucky had been applied to the respective software
projects in the past.

4.2 Discovery of Vulnerabilities
First and foremost, Chucky is designed to assist an an-

alyst in day-to-day auditing. In the following, we therefore
study our method’s ability to assist in the discovery of previ-
ously unknown vulnerabilities in practice. In particular, we
describe how 7 previously unknown vulnerabilities have been
discovered by applying Chucky on two real-world projects,
namely, LibTIFF and Pidgin. We have conducted further
studies uncovering 5 more unknown vulnerabilities. For the
sake of brevity however, we omit these and details of the
vulnerabilities here.

To ensure that all vulnerabilities found by Chucky are
previously unknown, we update the code of both software
projects to the most recent version. At the time of writing,
these are version 4.0.3 for LibTIFF and 2.10.6 for Pidgin.

4.2.1 LibTIFF Case Study
In the first case study, we employ Chucky to uncover

vulnerabilities in LibTIFF, an image processing library and
suite of tools for the Tagged Image File Format (TIFF). Im-
age processing libraries are a popular target for attackers as
parsing images securely is a challenging task. In particu-
lar, integer overflow vulnerabilities when dealing with image
dimensions (i.e., image width and height) are a common
problem. We therefore use Chucky to rank all functions of
the code base according to anomalous use of any parameters
or local variables named width, height, w or h.

1 static int
2 tiffcvt(TIFF* in, TIFF* out)
3 {
4 uint32 width, height; /* image width & height */
5 uint16 shortv;
6 float floatv;
7 char *stringv;
8 uint32 longv;
9 uint16 v[1];

10

11 TIFFGetField(in, TIFFTAG_IMAGEWIDTH, &width);
12 TIFFGetField(in, TIFFTAG_IMAGELENGTH, &height);
13

14 CopyField(TIFFTAG_SUBFILETYPE, longv);
15 [...]
16 if( process_by_block && TIFFIsTiled( in ) )
17 return( cvt_by_tile( in, out ) );
18 else if( process_by_block )
19 return( cvt_by_strip( in, out ) );
20 else
21 return( cvt_whole_image( in, out ) );
22 }

Figure 7: Missing checks of the variables width and
height in the function tiffcvt.

From the 74 functions dealing with these variables, Chucky
reports only a single function with an anomaly score of
100%. We examine the reported function tiffcvt (Figure 7)
to find that the width and height fields are obtained directly
from the image file at lines 11 and 12 and are not checked.
Chucky reports that all neighbors of the function perform a
check on the variable height while 79% additionally perform
a check on the variable width.

Indeed, this missing check leads to an integer overflow
when calling the function cvt_by_strip shown in Figure 8,
for which 50% of its neighbors suggest an additional check
for the width field. Triggering this overflow, a buffer smaller
than expected can be allocated at line 11, resulting in a
heap-based buffer overflow when calling TIFFReadRGBAStrip



Score Source File Function Name
0.92 tools/thumbnail.c initScale
0.88, tools/rgb2ycbcr.c cvtRaster
0.88 tools/rgb2ycbcr.c setupLuma
0.88 tools/ycbcr.c setupLuma
0.84 tools/pal2rgb.c main
0.84 tools/tiff2bw.c main
0.80 libtiff/tif print.c TIFFPrintDirectory
0.80 tools/raw2tiff.c guessSize
0.76 tools/sgisv.c svRGBContig
0.76 tools/sgisv.c svRGBSeparate

Table 2: Top ten functions returned for the sink
TIFFmalloc. All 10 functions fail to check the re-

turn value of the sink. Vulnerabilities are indicated
by dark shading.

1 static int
2 cvt_by_strip( TIFF *in, TIFF *out )
3

4 {
5 uint32* raster; /* retrieve RGBA image */
6 uint32 width, height; /* image width & height */
7 [...]
8 TIFFGetField(in, TIFFTAG_IMAGEWIDTH, &width);
9 TIFFGetField(in, TIFFTAG_IMAGELENGTH, &height);

10 /* Allocate strip buffer */
11 raster = (uint32*)
12 _TIFFmalloc(width*rowsperstrip*sizeof (uint32));
13 if (raster == 0) {
14 TIFFError(TIFFFileName(in),
15 "No space for raster buffer");
16 return (0);
17 } [...]
18 for(row=0;ok&&row<height;row+=rowsperstrip )
19 { [...]
20 /* Read the strip into an RGBA array */
21 if (!TIFFReadRGBAStrip(in,row,raster)) {
22 [...]
23 } [...]
24 }
25 _TIFFfree( raster ); [...]
26 return ok;
27 }

Figure 8: Integer overflow in the function
cvt_by_strip caused by the missing check in the caller
tiffcvt. In effect, a buffer overflow results when call-
ing TIFFReadRGBAStrip.

on line 21.Chucky thus leads us almost directly to a possibly
exploitable memory corruption vulnerability.

In a second example, our method is used to uncover NULL
pointer dereferenciations. To this end, all functions of the
code base are analyzed for missing or unusual checks for
_TIFFMalloc, a simple wrapper around malloc.

In total 237 functions call _TIFFMalloc. Table 2 shows the
top ten of these functions ranked by our method according
to anomalous use of _TIFFMalloc. In each of the ten cases,
Chucky reports that a check for the return value (expres-
sion $RET) is performed by the vast majority of neighbors,
while it is missing in the identified functions. Note, that
at no point, the checks required for the use of _TIFFMalloc

have been specified explicitly; instead Chucky leverages the
information distributed across the code base to determine
these security checks automatically. We confirm the missing
checks in all ten cases. In four of these, the omitted check
allows attackers to cause a denial-of-service condition by pro-

1 cvtRaster(TIFF* tif, uint32* raster,
2 uint32 width, uint32 height)
3 {
4 uint32 y;
5 tstrip_t strip = 0;
6 tsize_t cc, acc;
7 unsigned char* buf;
8 uint32 rwidth = roundup(width, horizSubSampling);
9 uint32 rheight = roundup(height, vertSubSampling);

10 uint32 nrows = (rowsperstrip > rheight ?
11 rheight : rowsperstrip);
12 uint32 rnrows = roundup(nrows,vertSubSampling);
13

14 cc = rnrows*rwidth + 2*((rnrows*rwidth) /
15 (horizSubSampling*vertSubSampling));
16 buf = (unsigned char*)_TIFFmalloc(cc);
17 // FIXME unchecked malloc
18 for (y = height; (int32) y > 0; y -= nrows){
19 uint32 nr = (y > nrows ? nrows : y);
20 cvtStrip(buf, raster + (y-1)*width, nr, width);
21 nr = roundup(nr, vertSubSampling);
22 acc = nr*rwidth + 2*((nr*rwidth)/
23 (horizSubSampling*vertSubSampling));
24 if(!TIFFWriteEncodedStrip(tif,strip++,
25 buf,acc)){
26 _TIFFfree(buf); return (0);
27 }
28 }
29 _TIFFfree(buf); return (1);
30 }

Figure 9: A missing check detected in the function
cvtRaster of the library LibTIFF.

viding specifically crafted input, whereas in other cases, only
a software defect is identified.

As an example, let us consider the function cvtRaster

shown in Figure 9. This function provides an illustrative
example because the programmer confirms that the return
value of _TIFFMalloc requires validation in the comment on
line 17. In this particular case, the method reports that 85%
of the function’s neighbors validate the return value and 40%
compare it to the constant NULL. No other Boolean expres-
sion is found to consistently occur across all neighbors in
more than 30% of the cases. Furthermore, from all symbols
used in the function, the deviation in its use of _TIFFMalloc

is most pronounced. The function is thus among the top
15% in the global ranking and thus Chucky points the ana-
lyst to vulnerability even if an interest in _TIFFMalloc is not
expressed explicitly.

4.2.2 Pidgin Case Study
In the second case study, we employ Chucky to uncover

two denial-of-service vulnerabilities in Pidgin’s implementa-
tion of the Microsoft Instant Messaging Protocol. In partic-
ular, we find that a vulnerability exists allowing users to re-
motely crash the instant messengers without requiring coop-
eration from the victims side. As starting point for our anal-
ysis, we review the C standard library for commonly used
functions, which crash upon reception of a NULL pointer
as an argument. As an example, the sinks atoi and strchr

are chosen and Chucky is employed to rank all functions
according to missing or faulty checks for these sinks.

Table 3 shows all functions with an anomaly score of over
50%, that is, cases where more than half of the neighbors
suggest a check to be introduced. Furthermore, in all cases,
Chucky indicates that the arguments passed to the sinks
need to be checked. With this information, we are able to



Score Source File Function Name
0.84 msn.c msn normalize
0.76 oim.c msn oim report to user
0.72 oim.c msn parse oim xml
0.72 msnutils.c msn import html
0.64 switchboard.c msn switchboard add user
0.64 slpcall.c msn slp sip recv
0.60 msnutils.c msn parse socket
0.60 contact.c msn parse addr... contacts
0.60 contact.c msn parse each member
0.60 command.c msn command from string
0.56 msg.c msn message parse payload

Table 3: Top ten functions returned for the sinks
atoi and strchr in Pidgin’s implementation of the Mi-
crosoft Instant Messenger Protocol. Vulnerabilities
are indicated by dark shading.

discover two cases among the top ten missing checks allowing
attackers to remotely crash Pidgin.

First Example.
For the function msn_parse_oim_xml shown in Figure 10,

Chucky reports that 72% of its neighbors validate argu-
ments passed to atoi while this function does not. Indeed,
this is the case on line 19 where the variable unread is passed
to atoi unchecked. Moreover, Chucky reports that 75%
of the function neighbors check the return value of xmln-

ode_get_data while this function does not. Combined, these
two missing checks allow Pidgin to be crashed by sending
an XML-message with an empty “E/UI” node. This causes
xmlnode_get_data to return a NULL pointer on line 13, which
is then propagated to atoi resulting in a crash.

1 static void
2 msn_parse_oim_xml(MsnOim *oim, xmlnode *node)
3 {
4 xmlnode *mNode;
5 xmlnode *iu_node;
6 MsnSession *session = oim->session;
7 [...]
8 iu_node = xmlnode_get_child(node, "E/IU");
9

10 if(iu_node != NULL &&
11 purple_account_get_check_mail(session->account))
12 {
13 char *unread = xmlnode_get_data(iu_node);
14 const char *passports[2] =
15 { msn_user_get_passport(session->user) };
16 const char *urls[2] =
17 { session->passport_info.mail_url };
18

19 int count = atoi(unread);
20

21 /* XXX/khc: pretty sure this is wrong */
22 if (count > 0)
23 purple_notify_emails(session->account->gc,
24 count, FALSE, NULL,
25 NULL, passports,
26 urls, NULL, NULL);
27 g_free(unread);
28 }
29 [...]
30 }

Figure 10: Missing check in the function msn_parse

_oim_xml of the instant messenger Pidgin.

Second Example.
For the function msn_message_parse_payload shown in Fig-

ure 11, Chucky reports a failure to check the argument
passed to strchr with an anomaly score of 56%. The vul-
nerable call can be seen on line 15 and can be triggered
by sending a message containing the string “Content-Type”
immediately followed by two successive carriage return line
feed sequences. This causes the variable value to be set to
NULL on line 10. This value propagates to strchr on line
15 causing the crash of Pidgin. This vulnerability is partic-
ularly interesting as it can be triggered by other users of the
MSN service.

1 void
2 msn_message_parse_payload(MsnMessage *msg, [...])
3 {
4 [...]
5 for (cur = elems; *cur != NULL; cur++)
6 {
7 const char *key, *value; [...]
8 tokens = g_strsplit(*cur, ": ", 2);
9 key = tokens[0];

10 value = tokens[1];
11 [...]
12 if (!strcmp(key, "Content-Type"))
13 {
14 char *charset, *c;
15 if ((c = strchr(value, ’;’)) != NULL)
16 {
17 [...]
18 }
19 msn_message_set_content_type(msg, value);
20 }
21 else
22 {
23 msn_message_set_attr(msg, key, value);
24 }
25 g_strfreev(tokens);
26 }
27 g_strfreev(elems);
28 /* Proceed to the end of the "\r\n\r\n" */
29 tmp = end + strlen(body_dem);
30 [...]
31 g_free(tmp_base);
32 }

Figure 11: Missing check in the function msn_message

_parse_payload of the instant messenger Pidgin.

5. LIMITATIONS
Similar to other methods for the discovery of security

flaws, Chucky cannot overcome the inherent limitations of
vulnerability identification. While our method is able to
expose missing security checks effectively, it cannot verify
whether these truly lead to vulnerabilities in practice. This
limitation, however, can be alleviated by the analyst, as he
can guide the search for vulnerabilities by only inspecting
security-critical sources and sinks, such as common memory,
network and parsing functions. As our experiments demon-
strate, this often enables Chucky to pinpoint missing checks
related to vulnerabilities with little manual effort.

In contrast to other methods, Chucky does not require
external information or code annotations to identify missing
checks. The method is capable of operating on the code
base of a software project alone. This advantage comes at
price: our approach is based on the assumption that the
majority of checks in a code base are correct and missing
checks are rare. While this assumption holds true for mature
software projects, it is not necessary satisfied by software at



an early stage of development. Consequently, Chucky is
better suited for finding vulnerabilities in stable code.

It is also important to note that Chucky makes no at-
tempts to evaluate expressions. Semantically equivalent checks
thus cannot be detected, which may lead to false positives in
practice. Moreover, our method is only able to detect checks
if they are missing entirely and cannot detect checks per-
formed too late. Combining our method with existing tech-
niques from data flow analysis and symbolic execution there-
fore seems to be an interesting direction for future work.

Finally, there exist many types of vulnerabilities that have
no relation to missing checks and thus cannot be exposed by
Chucky. Nonetheless, it is a common practice of developers
to add checks before potential vulnerabilities and security-
critical code, for example for protecting buffers, limiting ac-
cess to resources or changing the program flow. All these
checks can be exposed by Chucky and hence our method
addresses a wide range of possible security flaws.

6. RELATED WORK
The theory and practice of finding vulnerabilities in soft-

ware is a classic field of computer security. Due to their
generic nature, missing-check vulnerabilities border on a
wide range of previous research. In the following, we point
out relations to this work and related approaches.

Static Code Analysis.
In practice, checking tools such as Microsoft PREfast [15]

or PScan [5] are used to statically find vulnerabilities in
source code. These tools possess built-in information about
correct API usage and common programming mistakes, which
severely limits the kind of vulnerabilities these tools can
detect. An alternative route is taken by scanners such as
Splint [7], which allow code annotations to be supplied by
analysts. However, creating these annotations and rules re-
garding API usage is both time consuming and challenging
as it requires an intimate understanding of both internal and
external APIs of a target program.

Several approaches seize the idea of inspecting the tempo-
ral properties of API usage [e.g., 6, 16, 38] and attempt to
provide this information across projects [e.g., 10, 43]. Such
properties would, for instance, indicate that a lock function
call usually is followed by a call to the unlock function. Soft-
ware defects can thus be detected by identifying anomalies,
which do not comply with the derived set of rules. Con-
ditions, however, are not analyzed and therefore, these ap-
proaches are not suited for finding missing checks.

Tan et al. [34] analyze API call sequences to identify nec-
essary security checks whereas the mapping between a spe-
cific check and the event that is required to be checked is
specified in advance. Similarly, Livshits et al. [18] focus on
inferring information flow specifications by modelling prop-
agation graphs. In contrast, Chucky attempts to find miss-
ing checks in a more general scope and without additional
specification of the sensitive code regions or functions.

Other work goes one step further and makes use of ad-
ditional auxiliary information like software revision histo-
ries [19, 40] or different API implementations [32]. Similar
to Chucky, Son et al. [31] intend not to make use of anno-
tations or any external specifications. Instead they rely on
software engineering patterns commonly used in web appli-
cations and SQL queries that alter the database as security-
sensitive events. Therefore, this approach is tightly bound

to web applications while Chucky can be applied in any
programming environment if a suitable parser is available.

In many approaches, infrequent but correct patterns might
cause false positives due to a biased notion of normality.
Thummalapenta and Xie [35] address this by introducing al-
ternative patterns. We discussed this limitation with respect
to Chucky in Section 5. Another more general method
coined as vulnerability extrapolation [41, 42] learns from
known security flaws and finds locations that might exhibit
a similar vulnerability. We build on this method for the
neighborhood discovery described in Section 3.2.

Taint Analysis and Symbolic Execution.
Taint analysis or taint tracking is a method for perform-

ing information flow analysis. Data of interest is “tainted”
and tracked from a source through the system to a specified
sink. In principle one differentiates between static and dy-
namic taint analysis. Dynamic taint tracking has been used
for the discovery of vulnerabilities [e.g., 23, 37]. However,
since Chucky is strictly operating on source code, we do
not discuss dynamic approaches at this point. Static taint
tracking has been effectively used for detecting vulnerabili-
ties such as format string vulnerabilities in C programs [30]
or SQL injections and cross-site scripting [13, 17].

Nevertheless, taint analysis implies some limitations that
come down to its passive view on the data flow. Symbolic ex-
ecution can overcome these by actively exploring the code’s
state space and execution paths [1, 4, 9, 37]. Due to this
state exploration, symbolic execution becomes intractable
without heuristics to reduce the number of branches that
need to be analyzed. As a result it hardly can be used for
code auditing in practice [11].

7. CONCLUSIONS
Vulnerabilities in software are a persistent problem and

one of the root causes of many security incidents. Discover-
ing security flaws is a challenging and often daunting task,
as automatic approaches are inherently limited in spotting
vulnerable code. As a remedy, we introduce Chucky in
this paper, a method that can automatically detect missing
checks in software and thereby help to accelerate the manual
auditing of source code. Instead of struggling with the lim-
its of automatic approaches, our method aims at assisting a
human analyst by providing information about missing secu-
rity checks and potential fixes. Our evaluation demonstrates
the potential of this approach, since we are able to uncover
12 previously unknown vulnerabilities in popular software
projects among the first missing checks.

Finally, Chucky can interface with many other techniques
for finding vulnerabilities. For example, exposed missing
checks might be further analyzed using techniques for fuzzing
or symbolic execution. These techniques could allow to nar-
row down the actual consequences of a missing check and
might help to rank detected flaws according to their sever-
ity. Moreover, we currently plan to integrate Chucky in
a visual development environment and analyze its capabil-
ities to expose missing security checks directly during the
development of software.
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