
Thieves in the Browser:
Web-based Cryptojacking in the Wild

Marius Musch
TU Braunschweig

Christian Wressnegger
TU Braunschweig

Martin Johns
TU Braunschweig

Konrad Rieck
TU Braunschweig

ABSTRACT
With the introduction of memory-bound cryptocurrencies, such
as Monero, the implementation of mining code in browser-based
JavaScript has become a worthwhile alternative to dedicated mining
rigs. Based on this technology, a new form of parasitic computing,
widely called cryptojacking or drive-by mining, has gained mo-
mentum in the web. A cryptojacking site abuses the computing
resources of its visitors to covertly mine for cryptocurrencies. In
this paper, we systematically explore this phenomenon. For this, we
propose a 3-phase analysis approach, which enables us to identify
mining scripts and conduct a large-scale study on the prevalence
of cryptojacking in the Alexa 1 million websites. We find that cryp-
tojacking is common, with currently 1 out of 500 sites hosting a
mining script. Moreover, we perform several secondary analyses
to gain insight into the cryptojacking landscape, including a mea-
surement of code characteristics, an estimate of expected mining
revenue, and an evaluation of current blacklist-based countermea-
sures.

1 INTRODUCTION
Cryptocurrencies, such as Bitcoin and Ether, have gained popu-
larity in the last years, as they provide an alternative to centrally
controlled fiat money and a profitable playground for financial spec-
ulation. A basic building block of these currencies is the process
of mining, in which a group of users solves computational puzzles
to validate transactions and generate new coins of the currency
[see 27]. Although the stability and long-term perspectives of cryp-
tocurrencies are not fully understood, they have attracted large
user communities that mine and trade coins in different markets
with considerable volume. For example, Bitcoin reached an all-time
high of 19,300 USD per coin in December 2017 [8], resulting in a
market value comparable to major companies.

The mining of cryptocurrencies has been largely dominated by
dedicated hardware systems, such as GPU and ASIC mining rigs.
This situation, however, has started to change with the introduc-
tion of memory-bound cryptocurrencies, like Monero, Bytecoin,
and Electroneum. These currencies build on computational puzzles

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES ’19, August 26–29, 2019, Canterbury, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7164-3/19/08. . . $15.00
https://doi.org/10.1145/3339252.3339261

that are memory intensive and thereby reduce the advantage of
specific hardware over commodity processors [see 34, 38]. Conse-
quently, the resulting currencies can be profitably mined on regular
computer systems and thus open the door for the widespread ap-
plication of cryptocurrency mining.

Unfortunately, this development has also attracted miscreants
who have discovered cryptocurrencies as a new means for gener-
ating profit. By tricking users into unnoticeably running a miner
on their computers, they can utilize the available resources for gen-
erating revenue—a strategy denoted as cryptojacking or drive-by
mining [21]. A novel realization of this strategy is injecting mining
code into awebsite, such that the browser of the victimmines during
the website’s visit. First variants of these attacks have emerged with
the availability of the CoinHive miner in September 2017 [1, 22].
This software cleverly combines recent web technologies to im-
plement a miner that efficiently operates on all major browsers.
Although originally developed for benign purposes, CoinHive has
been maliciously injected into several websites [e.g., 10, 15]. In
August 2018, a vulnerability in MikroTik routers has been used to
inject a cryptojacking script into traffic passing through more than
200,000 of these routers [4].

In this paper, we present a large-scale study on web-based cryp-
tojacking. While previous work has anecdotally described this phe-
nomenon [12], discussed detection approaches [21] and investigated
a subset of the Alexa ranking [18], we systematically investigate
the prevalence of mining scripts in the Alexa Top 1 million websites.
To this end, we have instrumented a browser to monitor the exe-
cution of code during the visit of a website and spot indications of
mining activity, such as an unusual CPU utilization, the excessive
repetition of functions and the presence of suspicious scripts. In
summary, our study provides the following key insights:

(a) Web-based cryptojacking is not rare. We observe that
1 out of 500 websites in the Alexa ranking contains a web-based
miner that immediately starts once the website is visited. While
the JavaScript code driving the mining is diverse and often obfus-
cated, we observe that almost all miners employ similar WebAssem-
bly code from the CoinHive project. We credit this finding to the
CryptoNote protocol [38] that is implemented by the CoinHive
miner and can support different currencies with minor modifica-
tions.

(b) Mining profits are moderate. Our analysis further pro-
vides a glimpse at the ecosystem of current cryptojacking. Several
attackers operate on different websites using the same wallet or
API key. Based on the configuration of typical desktop computers

https://doi.org/10.1145/3339252.3339261

and statistics about website visits, we estimate the revenue gen-
erated by individual miners in the Alexa ranking at a range of a
few cents up to 340USD per day under the price of the respective
cryptocurrencies at time of our measurements.

(c) Existing defenses are insufficient.We investigate the ef-
fectivity of current defenses against cryptojacking, such as black-
lists and browser extensions. While these defenses provide suffi-
cient protection from known mining sites, such as CoinHive and
CryptoLoot, the underlying static detection patterns are ineffective
against customized variants of the mining code. We thus argue that
better protection from web-based mining is needed and, in addition
to static matching, also run-time analysis needs to be considered
to reliably track down mining activity. MineSweeper [21], for in-
stance, is a promising alternative that provides detection based on
characteristics of cryptomining code.

2 WEB-BASED MINING
Cryptocurrencies are a specific type of electronic money that pro-
vide decentralized control using the concept of blockchains [27].
In contrast to other electronic currencies, individuals generate
revenue by solving computational puzzles and thereby validating
transactions—a process referred to as mining. While mining of clas-
sic cryptocurrencies, such as Bitcoin and Ether, requires specific
hardware to be profitable, memory-bound currencies and novel web
standards have paved the way for effectively mining within web
browsers. In the following, we review these changes and discuss
their impact on cryptojacking.

2.1 Memory-bound Cryptocurrencies
Classic cryptocurrencies, such as Bitcoin and Ether, build on proof-
of-work functions (computational puzzles) that are CPU-bound,
that is, the effectivity of mining mainly depends on the available
computing power [5]. Hardware devices designed for demanding
computations, such as GPUs and ASICs, thus provide a better min-
ing performance than common CPUs. As a consequence, profitable
mining of classic cryptocurrencies has become largely infeasible
with regular desktop and mobile computer systems.

Memory-bound functions. This situation has not been anticipated
in the original design of the first cryptocurrencies and violates the
“one-CPU-one-vote” principle underlying Bitcoin mining [27]. As a
remedy, alternative cryptocurrencies have been developed in the
community that make use of memory-bound functions for con-
structing computational puzzles. One prominent example is the
cryptographic mixing protocol CryptoNote [38] and the correspond-
ing proof-of-work function CryptoNight [34].

CrypoNight is a hash function that determines the hash value
for an input object by extensively reading and writing elements
from a 2Megabyte memory region. This intensive memory access
bounds the run-time of the function and moves the overall min-
ing performance from the computing resources to the available
memory access performance. As memory access is comparably fast
on common CPUs due to multi-level caching, CryptoNight and
other memory-bound proof-of-work functions provide the basis
for alternative cryptocurrencies that can be efficiently mined on

regular desktop systems and hence are a prerequisite for realizing
web-based miners.

CryptoNote-based currencies. The idea of memory-bound proof-
of-work functions along with other improvements over the original
Bitcoin protocol has spawned a series of novel cryptocurrencies,
each forking the concept of CryptoNote. Prominent examples are
Monero [XMR, 36], Bytecoin [BCN, 6], and Electroneum [ETN, 11],
which reach a market capitalization between 226million and 3.8 bil-
lion USD [8]. These currencies share the underlying CryptoNote
protocol and thus can be easily implemented with the same code
base. Moreover, due to the concept of anonymous transactions they
provide more privacy than Bitcoin and may conceal the identity of
senders and receivers [see 23, 24].

Both properties—profitable mining on desktop systems and the
availability of different currencies following the same cryptographic
protocol—render these currencies an ideal target for web-based min-
ing. Furthermore, the increased privacy of transactions provides
a basis for conducting cryptojacking over manipulated web sites.
According to our findings, CryptoNote-based currencies are cur-
rently prevalent in web-based mining and play a major role in
cryptojacking as detailed in Section 4.

2.2 Novel Web Standards
The decentralized nature of cryptocurrencies imposes constraints
on the capabilities of mining clients. First, the clients need to effi-
ciently communicate with each other to synchronize the solving of
puzzles. Second, the clients require programming primitives that
enable an optimal utilization of available hardware resources.

At a first glance, these requirements seem to contradict with
classic web technology, as the underlying HTTP protocol induces
a non-trivial overhead and supported scripting languages, such
as JavaScript and ActionScript, do not provide efficient primitives
for low-level programming. However, browser vendors and the
W3C have continuously advanced web standards and developed
additional functionalities. In combination, WebSockets, WebWorkers
and WebAssembly provide a fruitful ground for web-based mining
of cryptocurrencies.

WebSockets. The WebSocket protocol has been standardized as
additional browser functionality in 2011 [14] and is supported by
all major browsers as of now. The protocol enables full-duplex com-
munication from the browser to a web server with less overhead
than HTTP. From the network perspective, the protocol is a classic
application-layer protocol that operates on top of the transport
layer. From the web application’s point of view, however, WebSock-
ets rather provide a transport protocol that enables transferring
arbitrary payloads.

In the context of web-based mining, WebSockets allow the ef-
ficient communication between miners through a web server and
thus are an integral part of currently available implementations.
However, WebSockets are also used in several other types of web
applications, like chats and multiplayer games, and thus represent
only a weak indicator of mining activity.

WebWorkers. A second addition are so-calledWebWorkers which
have been introduced in 2015 [17] and are also supported by all
major browsers. This programming primitive enables JavaScript

2

code to schedule multiple threads and conduct concurrent compu-
tations in the background. While the original programming model
underlying JavaScript already supports event-driven concurrency,
orchestrating the available computing resources, such as multiple
cores, has been technically involved. This problem is alleviated
with WebWorkers, where the number of concurrent threads can be
scaled with the available processor cores easily.

Although WebWorkers are not strictly necessary for implement-
ing web-based mining, they allow for better utilizing the available
resources and thus can also be found in most implementations. For
our study, we hence consider the presence multiple of WebWorker
threads as an indicator for potential mining activity.

WebAssembly. The previous two functionalities ease the commu-
nication and scheduling of web-based miners. Yet they are not suf-
ficient for realizing an efficient implementation, as the underlying
JavaScript code requires a costly interpretation within the browser.
This problem is addressed by the WebAssembly standard from
2017 [31]. The standard proposes a low-level bytecode language
that is a portable target for compilation of high-level languages,
such as C/C++ and Rust. WebAssembly code, or Wasm code for
short, is executed on a stack-based virtual machine in the browser
and improves the execution as well as loading time over JavaScript
code [16]. WebAssembly is currently supported by Chrome, Safari,
Firefox and Edge1.

WebAssembly is a perfect match for implementing mining soft-
ware, as it enables compiling cryptographic primitives, such as
specific hash functions, from a high-level programming language
to low-level code for a browser. As an example, Figure 1(a) shows a
simplified snippet of C code from the cryptographic hash Skein [13].
The corresponding WebAssembly code is presented in Figure 1(b)
as raw bytes and instructions. Note that the instructions do not
contain any registers, due to the stack-based design of the virtual
machine. The characteristic constant of the Skein hash, which here
is encoded in LEB128 format—a variable-length representation of
integer numbers [see 37]—is visible in line 5.

1 int64_t k18 = k16 ^ k17 ^ 0x1bd11bdaa9fc1a22;

(a) Simplified C code snippet from the Skein hash.

1 00: 20 10 ; get_local 16
2 02: 20 11 ; get_local 17
3 04: 85 ; i64.xor
4 05: 42 ; i64.const
5 06: a2 b4 f0 cf aa fb c6 e8 1b ; i64 literal
6 0e: 85 ; i64.xor
7 0f: 21 12 ; set_local 18

(b) Corresponding WebAssembly code as raw bytes and instructions.

Figure 1: Example of C and WebAssembly code.

2.3 The CoinHive Miner
The first implementation of a mining software based on the afore-
mentioned developments was released as the CoinHive miner in
September 2017. It originally had been developed for a popular
1Statistics from https://caniuse.com/#feat=wasm, May 2018

image board as an alternative payment mechanism [22]. Several
variants that, similar to CoinHive, all implement the CryptoNote
protocol have been developed ever since, including JSECoin and
CryptoLoot. Although these implementations differ in some details,
they share how WebSockets, WebWorkers and WebAssembly are
used for efficient web-based mining.

The miner itself is distributed via a single JavaScript file, which
the website’s owner includes on the page along with a small snippet
to configure and start the mining process. The snippet and its
configuration may be further customized, e.g., to not execute on
mobile devices, but at least requires a unique id that maps miners
to identities—in the case of CoinHive, so-called site-keys—in order
to account payouts for calculated hashes. Due to this additional
indirection it usually is not possible to link miners, identified by
site-keys, to specific wallet addresses. Moreover, each account may
be associated with multiple site-keys, such that multiple mining
sites may in fact mine for the same wallet without disclosing the
fact to the public.

2.4 Cryptojacking
Web-based mining certainly has legit use-cases and may pose an
alternative to online advertisements as scheme of monetization.
Moreover, mining might even replace CAPTCHAs used for rate
limitation by requiring a proof-of-work. The anonymity offered
by cryptocurrencies in combination with simple deployment on
the web, unfortunately, also attracts actors with less noble goals.
As the effort and cost of including a miner in an existing website
is negligible, all it needs is access to a frequently visited website.
Recently, a variety of incidents involving mining scripts have been
reported for popular websites [33, 41].

We define cryptojacking as the practice of automatically starting
a web-based miner upon visiting a web page. For this, we neither
consider the disclosure of the mining process to the user nor the
presence of an opt-out mechanism relevant. We view a consent
after the fact as an inadmissible mode of operation, similarly to how
the GDPR now requires a “clear affirmative action” for tracking
cookies in the EU [9]. Miners that only run after explicit consent
by the user, such as Authedmine and JSEcoin, are not considered
part of the problem and are thus not examined in our study. To
conclude that a website employs cryptojacking, we further do not
differentiate between scripts added by the website’s owner and
scripts injected by a third party by means of hacking the server or
hijacking included scripts.

3 IDENTIFICATION OF WEB-BASED MINERS
Based on the discussed background, we proceed to present our sys-
tematic study of cryptojacking on the web. The goal of this study
is to evaluate to which degree the recent level of hype is justified
through painting a comprehensive picture of the current cryptojack-
ing practices in the wild. To this end, we measure the prevalence of
cryptojacking in today’s web (Section 3.4) and examine the effec-
tiveness of the current generation of dedicated anti-cryptojacking
countermeasures (Section 3.5). After introducing our approach and
documenting our experiments, we address these topics in detail.

3

https://caniuse.com/#feat=wasm

Alexa 1 million
websites

Active
miners

Generalized
miners

Miner
candidates

Phase 1:
Detection of candidates

Phase 2:
Validation of miners

Phase 3:
Generalization of miners

Dynamic analysis for 5 seconds.
Detection of suspicious functions.

Dynamic analysis for 30 seconds.
Detailed measuring of CPU load

Static analysis of mining code.
Generalization of files and links.

Active
miners

Generalized
miners

Miner
candidates

Alexa 1 million
websites

Figure 2: Overview of our approach for identification of web-based miners.

3.1 General Approach
For conducting our study, an empirical method is required that is
accurate in its detection capabilities while being scalable to enable
the analysis of large numbers of real-world websites. To accommo-
date these requirements, we designed a dedicated cryptojacking
detection process that spans three individual phases: 1) An over-
permissive first broad sweep to identify potential miner candidates
using heuristics, 2) a thorough run-time analysis to isolate the real
miners within the candidate set, and 3) a generalization step, in
which we extract static indicators, that allow the identification of
non-active or stealth mining scripts (see Figure 2).

Phase 1: Detection of candidate sites. In the first phase, our ap-
proach conducts a fast and imprecise initial analysis of websites to
create a pool of candidates which likely—but not necessarily—host
a mining script. To do so, we compiled a set of heuristics that hint
the potential presence of a cryptojacking script and that can be mea-
sured at run-time while rendering a webpage in a browser. These
heuristics were extracted from a manual analysis of verified mining
scripts. For one, we initiate a short profiling of the site’s CPU usage,
with unusual high CPU utilization levels being interpreted as an
indicator for mining. Furthermore, we mark all sites as suspicious,
that use miner-typical web technologies, which are not in wide-
spread use in the general web, namely WebAssembly or non-trivial
amounts of WebWorkers. If at least one of these indicators could be
found in a site, this site is marked as a potential mining candidate.
Thus, the result of this phase is an over-approximation of the set of
actual mining sites.

Phase 2: Validation of mining scripts. For obvious reasons, none
of the used heuristics is conclusive in the identification of miners, as
there is a multitude of legitimate reasons to use WebWorkers, Web-
Assembly or temporary high amounts of computation. However,
the constant and potentially unlimited usage of CPU, caused by a
single functionwithin parallelized scripts is a unique phenomenon of
cryptojacking. Thus, in the second phase we conduct a significantly
prolonged run-time analysis of the candidate sites, in which the
sites receive no external interaction and hence should be idle after
the initial rendering and set-up in legitimate cases. However, if
once the page is loaded, all JavaScript is initialized, and the DOM
is rendered, the CPU usage still remains on a high level and the
computation load is the result of repetitive execution of a single
function within the webpage’s code base, we conclude that the site
hosts an active cryptojacking script.

Phase 3: Generalization of miner characteristics. The run-time
measurements of the first two phases limit our approach to the
detection of active mining scripts. We thus might miss mining
sites that are inactive at the time of the test, for instance due to
programming errors in the site’s JavaScript code, a delayed start
of the mining operation, or mining scripts waiting for external
events (e.g., initial user interaction with the page). To create a
comprehensive overview, it is important to identify these sites to
document the intent of mining. To this end, we leverage the results
of the second phase to generate a set of static features of mining
scripts which we can be used to reevaluate the data from phase 1.

To this end, we first extract the JavaScript code from the validated
mining sites that is responsible for initiating and conducting the
mining operations. From this script code, we take both the URL and
a hash of its contents as two separate features. Furthermore, we
collect all parsed WebAssembly functions, sort them and use the
hash of the whole code base as the third feature. We then apply each
feature to our list of confirmed miners from the previous phase and
keep only those that describe at least a certain number of miners.
As the result, we obtain a set of generalized fingerprints, which
can identify common mining scripts even in their inactive state.
Applying these onto the data collected during the first phase in
combination with our list of confirmed miners from the second
phase yields to total number sites with a web-based miner.

3.2 Implementation
We implemented the previously outlined approach into our custom
web crawler. In the following, we cover some details of the imple-
mentation, which enable us to obtain accurate results on a large
scale in a real-world environment.

3.2.1 Instrumented browser. We use a normal browser to visit all
websites, in this case Google Chrome. This ensures that we will
execute all scripts and support all modern features needed to run
a miner in the browser (see Section 2.2). By starting Chrome in
headless mode, we can run many instances simultaneously without
the overhead of a GUI. Our crawler is written in NodeJS and controls
each instance via the DevTools Protocol [7], which allows us to
instrument the browser and extract all necessary data.

3.2.2 Fake number of cores. The number of logical cores of a vis-
itor’s CPU is exposed in JavaScript via the hardwareConcurrency

property of the global navigator object. This allows scripts to adjust
the number of concurrent WebWorkers according to the available
hardware and is used by miners to start the desired number of

4

threads (usually one per core). However, we do not want a single
mining site to seize all available resources on our server and in-
terfere with simultaneous visits of other websites. Furthermore,
websites might employ checks on the number of cores and not run
if an unusually high number is observed, thus preventing us from
detecting them. Changing the returned value can be achieved by
injecting a script into each document that overwrites the property
before executing any other script content.

3.2.3 CPU Profiling. Most importantly, instead of using standard
Unix tools to measure the CPU load on a per-process level, we utilize
the integered profiler of Chrome’s underlying JavaScript engine V8
to measure the load on a per-function level. The profiler pauses the
execution at a regular interval and samples the call stack, which
enables us to estimate the time spent in each executed function.
This way, we can not only determine if a single function consumes a
considerable amount of CPU time, but also pinpoint the responsible
script in the website’s code.

In order to achieve this, we aggregate the collected data for each
unique call stack. Wasm code itself cannot be profiled on a function
level, so all samples of it are just named <WASM UNNAMED>. However,
from the call stack we can still see how much time the Wasm code
took and trace it back to the JavaScript function which caused the
call into Wasm in the first place (see Table 1). By comparing the
time spent in a function with the length of the profiling, we can
estimate the caused CPU load for that particular function. Note
that if the same code is running in several workers simultaneously,
the combined time from all workers can be as high as the number
of cores times the length of the profiling, e.g., our profiling for
5,000 milliseconds with 4 CPU cores in phase 1 can result in a
maximum time of 20,000. Thus, taking the value of 14,375 from
Table 1 as an example, would mean this function generated a load
of approximately 72 %.

Table 1: Example of a call stack with the aggregated amount
of samples and time spent for each of its functions.

Function name # Samples Time in ms

<WASM UNNAMED> 73,938 14,375.3
Module._akki_hash 1 0.1
CryptonightWASMWrapper.hash 4 0.6
CryptonightWASMWrapper.workThrottled 11 1.8
(root) 0 0.0

3.3 Experimental Setup
We used the aforementioned implementation to find instances of
web-based cryptojacking in the wild. The following paragraphs
briefly discuss the key parameters of our experimental setup for
each of the three phases.

Phase 1. We conducted our study on the Alexa list of the top
1 million most popular sites2. We visit the front page of each site
and wait until the browser fires the load event or a maximum of
30 seconds pass. Furthermore, to allow for sites that dynamically
load further content, we wait an additional 3 seconds or until no
more network requests are pending. We then start the CPU profiler
2http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

and measure all code execution for 5 seconds and flag the site as
suspicious, if there is a function with more than 5 % load on average.
As the most CPU-heavy function on each website of the Alexa Top
1 million had an average load of only 0.2 %± 3.21, we reckon that a
value of 5% or more warrants further investigation. We also flag the
site for extendend analysis, if either any Wasm code or more than
3 workers are used, which is equal or more than all the CPU cores
we pretend to have. For this phase, we used a single server with 24
CPU cores and 32 GB of RAM running 24 simultaneous crawlers
backed by Chrome v67.0.3396 over a time span of 4 days.

Phase 2. The detailed verification of suspicious sites uses the
same general setup as the first phase. However, here we only run
one crawler on a smaller server with 8 CPU cores. By visiting the
websites one-by-one and profiling for a longer time of 30 seconds,
we can more accurately determine if a website contains a mining
script. If there is one function in the code base that results in an
average load of 10 % or more, we label it as a confirmed and active
miner. We argue that while a value lower than 10% certainly would
make the miner very hard to detect, it also severly thwarts the
ability to make money with cryptojacking. Furthermore, such slow
mining does not even seem to be supported by popular mining
scripts, as we will describe shortly.

Phase 3. In the final step, we create the fingerprints as outlined
in Section 3.1 using the code of the confirmed miners. However,
we only keep the fingerprints shared by at least 1 % of all miners.
This restrictive measure ensures that only mining scripts with
multiple validated instances produce fingerprints and, thus, avoids
accidental inflation of potential phase 2 classification mistakes. The
resulting fingerprints are then applied to the collected data from
the first phase, yielding the final number of websites employing
cryptojacking on their visitors.

To validate that our implementation and setup are working as in-
tended, we created a testbed with the two popular implementations
that start without the user’s consent: CoinHive and CryptoLoot.
This testbed consists of 24 locally hosted pages, which each contain
one of the miners at a different throttling levels between 0% and 99%.
Interestingly, even if the miner is configured with a throttle as high
as 99%, so that it should utilize only 1% CPU, we can confirm it as a
miner with our 10% threshold. Looking into the implementation of
the throttling, we find that the code never sleeps for longer than
two seconds between hash calculations, which makes it impossible
to actually use very low throttling values. We also confirm this by
monitoring Chrome’s CPU usage with htop and find that no matter
how high we set the throttling, the load on our machine never drops
to below 20%. As our implementation is able to successfully detect
all miners in the testbed, regardless of the used throttling value, we
are confident its ability to find active cryptojacking scripts.

3.4 Prevalence
As first result of our crawling, we identify 4,627 suspicious sites in
the Alexa ranking using the methodology and parameters outlined
in the previous sections. Out of these, 3,028 are flagged for having
a load-intensive function, 3,561 for using at least as many workers
as CPU cores we pretend to have and 2,477 for using Wasm. Note

5

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

that these sets overlap, as for example the usage of Wasm often
implies a CPU intensive application.

The detailed analysis of these 4,627 suspicious sites results in
1,939 sites with a continuously high CPU usage over a profiling for
30 seconds. We use the resulting set of scripts for the third phase
to build fingerprints of the most popular miners, resulting in 15
hashes of JavaScript code, 12 hashes of Wasm code bases, and 8
script URLs. The latter can be found in Table 3. After applying these
fingerprints, we obtain the final number of 2,506 websites, which
are very likely to employ cryptojacking. Table 2 summarizes our
results.

Table 2: Prevalence of miners in the Alexa Top 1 million.

Phase Result # Websites % of Alexa

1 Suspicious sites 4,627 0.46
2 Active cryptojacking sites 1,939 0.19
3 Total cryptojacking sites 2,506 0.25

Table 3: Common script URLs responsible for the creation
of the mining workers, which resulted in fingerprints

URL # Occurrences

//coinhive.com/lib/coinhive.min.js 656
//advisorstat.space/js/algorithms/advisor.wasm.js 311
//www.weather.gr/scripts/ayh9.js 68
//aster18cdn.nl/bootstrap.min.js 59
//cryptaloot.pro/lib/crypta.js 46
//gninimorenom.fi/sytytystulppa.js 35
//coinpot.co/js/mine 27
//mepirtedic.com/amo.js 22

During manual investigation of a sample of the additional 567
sites only detected in phase 3, we found five reasons why our
dynamic analysis missed these miners: (1) A script for web-based
mining is included, but the miner is never started. (2) The miner
only starts once the user interacts with the web page or after a
certain delay. (3) The miner is broken—either because of invalid
modifications or because the remote API has changed (as it was the
case for CoinHive earlier this year). (4) The WebSocket backend is
not responding, which prevents the miner from running. (5) The
miner is only present during some visits, e.g., to hinder detection
or due to ad banner rotation

This analysis confirms the need for a three-step identification
process, as only the combination of phase 2 and 3 enable us to
determine a comprehensive picture of current cryptojacking in the
websites of the Alexa ranking.

3.5 Effectiveness of Countermeasures
To both compare our findings to existing approaches for the detec-
tion of cryptojacking and to validate our results, we select three
popular solutions to block miners in the browser. For one, we use
the NoCoin adblock list3, which is a generic list for adblockers, such
as Adblock Plus or uBlock Origin and is now also used by Opera’s
built in adblocker. For the remainder of this section, we refer to this
3https://github.com/hoshsadiq/adblock-nocoin-list/

list as Adblocker. Furthermore, we include the blacklists used by the
two most popular Chrome extensions with the purpose of blocking
web-based miners: No Coin4 with 566,692 users and MinerBlock5

with 161,630 users. We extract the detection rules these extensions
contain and translate them into SQL statements while preserving
the wildcards, in order to apply them to the data collected during
our crawl of the Alexa Top 1 million sites. The number of identified
miners for each system are presented in Table 4 in the first column.
The other columns of this table compare these results for each sys-
tem with the 2,506 websites we identified as miners. The second
column reports on the intersection of both lists, that is the number
of sites on which both approaches are in agreement. Accordingly,
the last two columns each contain the number of sites that one
approach reported, but not the other.

Table 4: Detection results of our approach and three com-
mon blacklists as absolute numbers.

Blacklist # Detections # Both # Only they # Only we

Minerblock 1,599 1,402 197 1,104
No Coin 1,217 1,039 178 1,467
Adblocker 1,136 1,049 87 1,457

Unsurpisingly, our approach mixing static and dynamic analysis
clearly outperforms the three static blacklists and spots a consider-
able amount of additional web-based miners. Moreover, the large
overlap in sites that both we and the extensions found, validates
that our approach and shows that it is indeed suitable to detect
cryptojacking in the wild.

There are, however, a few sites that our approach misses, but the
blacklists detect. Manual analysis of a subset showed that besides
overly zealous lists, the main reason is that we can only learn
fingerprints of active miners. For example, some website owners
copied CoinHive’s script to host it on their own servers a few
months ago. Meanwhile, all these mining scripts stopped working,
as CoinHive changed its API used in the communication with the
pool. Therefore, while this probably represents a cluster of inactive
miners, we are unable to detect them, as no fingerprint for any of
the scripts could be generated in the third phase, due to the fact
that the whole cluster was inactive at the time of analysis.

The existing blacklists on the other hand can detect them, as
their rules are curated by humans, which allows them to apply a
couple of generic measures. For example, most blacklists include
a rule for */coinhive.min.js. In contrast, our static indicators are
generated in a fully automated fashion, based on code characteris-
tics from dynamically validated miner instances. In this process, we
cannot generalize our list of fingerprinted full script URLs towards
partial URLs or even only filenames without manual review, as this
could lead to misclassifications. For instance, in our dataset such
an attempt would end up in all scripts named */bootstrap.min.js

being blacklisted because a widespread mining script uses this
benign-sounding name (see Table 3).

4https://chrome.google.com/webstore/detail/gojamcfopckidlocpkbelmpjcgmbgjcl
5https://chrome.google.com/webstore/detail/emikbbbebcdfohonlaifafnoanocnebl

6

 //coinhive.com/lib/coinhive.min.js
 //advisorstat.space/js/algorithms/advisor.wasm.js
 //www.weather.gr/scripts/ayh9.js
 //aster18cdn.nl/bootstrap.min.js
 //cryptaloot.pro/lib/crypta.js
 //gninimorenom.fi/sytytystulppa.js
 //coinpot.co/js/mine
 //mepirtedic.com/amo.js
https://github.com/hoshsadiq/adblock-nocoin-list/
https://chrome.google.com/webstore/detail/gojamcfopckidlocpkbelmpjcgmbgjcl
https://chrome.google.com/webstore/detail/emikbbbebcdfohonlaifafnoanocnebl

4 REVENUE ANALYSIS
After identifying web-based miners in the Alexa ranking, we pro-
ceed to analyze the efficacy of these miners in detail. For this anal-
ysis, we focus on all active miners discovered in phase 2 of our
study, that is, websites that immediately begin mining when visited
by a browser. First, we describe how we have chosen important
parameters for the following estimates (Section 4.1). Based on this,
we estimate the average profit of for all the 1,939 active mining web-
sites and answer the question of whether such mining can generate
significant income (Section 4.2). We then investigate how aggres-
sively these web pages stress the visitors’ CPUs to shed light on the
stealthiness of current cryptojacking in the web (Section 4.3). Fi-
nally, we determine how many different implementations of miners
exist in our dataset and whether these differ due to customization
and obfuscation (Section 4.4).

4.1 Estimation Parameters
Determining the exact revenue of web-based miners is a non-trivial
task, as the profit depends on several factors, such as the popularity
of a website, its content, the visitor’s hardware as well as the current
price of the cryptocurrency. For our analysis, we thus focus on
the CoinHive library and measure its run-time performance for
different desktop and mobile CPUs. Results of this experiment are
shown in Table 5, where the performance is presented in hashes per
second for one core and the entire CPU. Due to the memory-bound
proof-of-work function, the hash rate varies only slightly between
the different CPU models when executed on one core. The only
exception is the HiSilicon CPU whose cache is limited to 2MB and
thus is not suitable for computing the CrypoNight hash. We thus
assume a rate of 80H/s for an average CPU. Furthermore, we use
the payout rate at time of our measurement crawl6.

Table 5: Performance of different CPUs with CoinHive.

CPU model Cache size Hashes/s

Product name and clock speed L2/L3 Core CPU

Intel® Xeon® E5-1650 v3 @ 3.50GHz 15MB 22.2 148.9
Intel® Core™ i7-7700K @ 4.20GHz 8MB 21.4 115.3
Intel® Core™ i7-6820HQ @ 2.70GHz 8MB 23.2 90.2
Intel® Core™ i7-5557U @ 3.10GHz 4MB 21.1 35.5
Apple A11 Bionic APL1W72 8MB 16.0 35.1
HiSilicon Kirin 620 @ 1.20GHz 2MB 2.0 11.6

4.2 Average Revenue
We proceed to estimate the expected revenue for the active miners
identified in Section 3. In particular, we make use of the SimilarWeb
service to quantify the number of visits as well as the average dura-
tion for the websites hosting the miners. The results of this analysis
are shown in Table 6, where we include the 10 most profitable sites
identified during our analysis. These sites are able to generate be-
tween 0.53 and 1.51XMR per day, that is, 119 to 340USD. Given
that the revenue is achieved without the consent of the visitors and
visual indications, this is still a notable profit. However, we con-
clude that current cryptojacking is not as profitable as one might
expect and the overall revenue is moderate.
6According to https://coinmarketcap.com/, 1XMR =225USD in May 2018

Table 6: Visiting statistics for the top-10 sites containing
miners.

Visitors Duration Core hours Revenue*

per day per visit per day XMR per day

cinecalidad.to 1.3M 4’10” 89K 1.5
mejortorrent.com 0.8M 4’30” 60K 1.1
kinokrad.co 1.3M 2’29” 54K 1.0
ianimes.co 0.2M 13’07” 39K 0.7
india.com 1.3M 1’27” 32K 0.6
ddmix.net 0.4M 5’06” 38K 0.6
seriesypelis24.com 0.4M 5’22” 35K 0.6
seriesblanco.com 0.4M 6’06” 36K 0.6
ekinomaniak.tv 0.2M 10’10” 33K 0.6
kickass.cd 0.3M 5’24” 30K 0.5

* Estimated based on CoinHive’s payout ratio6 and 80H/s.

We continue to asses the average profit made by mining on the
web. To this end, we inspect the distribution of visits per day and the
average duration of these in Figure 3. The websites with the largest
outreach in our dataset (cinecalidad.to) has 1.3 million visits. A
different site (ianimes.co) attracts less visitors, but engages them
to stay 13 minutes on the web page. On average these websites
attract 24,721 visitors per day and keep them for roughly 3minutes
on average. Overall, we thus observe a range of 0.17 to 89,000 core
hours, with a mean of 1,550 core hours. With a hash rate of 80H/s
and CoinHive’s payout ratio6, a miner earns about 5.8USD per
day and website on average, which supports our observation that
web-based cryptojacking currently provides only limited profit.

Next, we group websites that make use of the same site-key to
calculate the overall revenue of mining entities. Tracking these
relations provides valuable insights on the landscape of cryptojack-
ing, as we can identify attackers that deploy miners on multiple
websites. Note, that this analysis is not limited to CoinHive, but
applies to any variant using the original implementation. We thus
observe a large variety of unique site identifiers. A few instances
make use of nondescript values such as X or abc, though, which
we filter out for this particular measurement. Figure 4 depicts the
frequency of websites per site-key in bins of 5.

Our analysis shows that site-keys are indeed reused across dif-
ferent websites. Few cryptojackers even pool forces across up to
40 to 55 websites, while the majority of attackers appears to act on
their own or, more likely, utilize CoinHive’s function of aggregating
multiple site-keys with one account. Moreover, we observe that

101 102 103 104 105 106

Number of Visitors

0 10 20 30 40 50 60
Minutes

Figure 3: Distribution of visits to web pages identified to use
web-based miners (top) and the duration per visit (bottom).

7

https://coinmarketcap.com/

5 10 15 20 25 30 35 40 45 50 55
Web pages per site-key

100

101

102

Fr
eq

ue
nc

y

Figure 4: Distribution of websites per site-key.

23 web pages make use of at least two site-keys. These websites
thus connect clusters of miners.

4.3 Greediness vs. Stealthiness
The revenue of a cryptojacking campaign may vary a lot, depending
on how aggressive the miner occupies the visitor’s CPU cores.
Using large amounts of processing power earns the most money,
but simultaneously may raise suspicion due to an unresponsive
computer and audible fan noise. An attacker thus has to strike a
balance between profit and stealthiness in practice.

Many popular implementations of web-based miners allow for
the configuration of a throttling value. While CoinHive’s default
value is 0, their example recommends a value of 0.3, which means
the miner only uses 70 % of the available computing power by
constantly monitoring the current and maximum possible hash rate
and idling or mining accordingly. The data we have gathered in
Phase 2 for the validation of miners allows us to approximate the
CPU load and thus also the throttling value chosen by the website
operator.

0% 20% 40% 60% 80% 100% 120%
CPU consumption

0.000

0.005

0.010

0.015

0.020

0.025

De
ns

ity

Figure 5: CPU consumption of cryptojacking web pages.

The results of our analysis are shown in Figure 5. The most
popular setting is in the range 50–70 %. Interestingly, about 5 % of
the websites attempt to even use up more CPU cores than available
on the system. This suggests that some attackers are especially
greedy in their attempts to max out the available processing power
by starting more mining threads than the CPU can handle.

4.4 Code Diversity
As the last step, we analyze the diversity of the JavaScript and
WebAssembly code in the identified miners. For JavaScript, we can

identify the script responsible for mining by inspecting the CPU
profiling. For the WebAssembly code, on the other hand, we have
to first concatenate all parsed functions into a single file using their
SHA1 hashes for ordering, as we separately obtain these functions
from the debugger. As a result of this preprocessing, we obtain
one sample of JavaScript and one merged sample of WebAssembly
code for each of the 1,939 websites containing miners. While this
representation simplifies our experimental setup, it requires a fuzzy
analysis, as minor perturbations in the merged files obstruct the
application of exact matching.

We thus employ techniques from information retrieval that can
cope with noisy data. In particular, we conduct an n-gram analy-
sis, where the code samples are first partitioned into tokens using
whitespaces and then mapped to a vector space by counting the
occurrences of n-grams (sequences of n tokens) [see 32]. This vec-
torial representation enables us to compute the cosine similarity
between all samples and generate the similarity matrices shown
in Figure 6. The columns and rows of the matrices are arranged
using hierarchical clustering, such that larger groups of similar
code samples become visible.

(a) Similarity of JavaScript code

0 500 1000 1500
Samples

0

500

1000

1500

Sa
m

pl
es

0.0

0.2

0.4

0.6

0.8

1.0

(b) Similarity of WebAssembly code

Figure 6: Similarity and cluster analysis of JavaScript and
WebAssembly code found in web-based miners.

For JavaScript, we identify 23 clusters of similar code. These
clusters correspond to diverse implementations, including the Coin-
Hive library (largest cluster) as well as modified and obfuscated
code from different cryptojacking campaigns. By contrast, the We-
bAssembly code present in the 1,939 websites shows almost not
diversity and is highly similar to the original CoinHive implemen-
tation. We credit this finding to minor modifications of the original
code that allow for supporting alternative currencies or operating
over less expensive mining pools.

In summary, we conclude that the current landscape of crypto-
jacking is dominated by variants of CoinHive. Although we spot
different JavaScript code wrapping the miners, the low-level code
is in almost all cases derived from a single implementation. Ap-
parently, the cryptographic primitives underlying the CryptoNote
protocol and in particular its proof-work-functions have only been
once translated to a web implementation and hence all activeminers
in our study rest on the same foundation.

5 DISCUSSION AND LIMITATIONS
Our study provides the a comprehensive view on cryptojacking
in the wild. Nonetheless, several of our results are estimates and

8

approximations, as exact measurements are hardly possible in a
dynamic system such as the Internet. In the following, we discuss
threats to the validity of our empirical study and how they have
been addressed in our implementation and experimental setup.
Moreover, we pinpoint directions for extensions that can limit
certain effects in future studies.

False positives. The core of this paper consists of a detection ap-
proach that aims to find cryptojacking scripts at run-time. This task
comes with an inherent precision problem, as we try to determine
the semantics of executed code from dynamic execution artifacts
based on a set of heuristics and characteristics. Thus, even though
the used set of indicators and heuristics are carefully chosen, based
on thorough manual analysis of validated cryptojacking code, there
are no formal guarantees that the approach really identifies mining
scripts or does not accidentally misclassify some examined sites,
for instance, due to computation-heavy, legitimate JavaScript code.

To examine the potential problem of misclassification, we use a
similarity analysis on the resulting data set of JavaScript and Wasm
code (see Section 4.4). While in the collected set of JavaScript a
certain degree of variance exists, the vast majority of Wasm code
exhibits an astonishingly high degree of similarity, with less than 4%
of outliers. To further investigate the JavaScript code, we selected
one random sample from each of the 23 clusters to represent that
cluster. By combining manual static and dynamic analysis and
searching for mining-specific strings and functions, we were able
to confirm that each sample is indeed a cryptominer and thus the
whole cluster is likely to contain only scripts used for cryptojacking.

False negatives. The study only provides a lower bound on the
overall cryptojacking landscape, as we are aware of a set of sce-
narios, which are currently not covered by our methodology: First,
we only visit the homepages without deeper crawling of the sites.
Second, sites might deliberately delay the inclusion of the min-
ing scripts in the web document. Similarly, sites could use a non-
deterministic condition or require user interaction to start the miner.
However, increasing the reach of the crawling process and extended
examination times would in general address the majority of the
potential problems. Also, periodic repetition of the experiment will
lead to the eventual detection of unreliable or currently malfunc-
tioning miners. We leave these measures to future work.

Regarding the use of evasions to prevent detection, it should be
noted that techniques like delaying the start of the miner also come
with a significant drawback: Unlike traditional malware infections,
where the malware likely can achieve persistance on the system,
web-based mining stops as soon as the user closes the browser tab.
Thus, an attacker only has limited time to run the mining code and
any delays will negativly affect his profits, making it less likely to
encounter such techniques.

Data analysis. The results of the revenue estimations (Secion 4.2)
directly rely on external data from SimilarWeb. Thus, the quality of
the provided analysis depends on the quality of the external data.
Especially, the revenue calculations rely on estimated figures that
are compiled using proprietary methodologies. Thus, the impact
of potential problems in the underlying data should be considered
when interpreting the presented results.

6 RELATEDWORK
The study by Eskandari et al. [12] was the first to provide a peek
at the cryptojacking phenomenom. However, the study is limited
to vanilla CoinHive miners, and the underlying methodology is
unsuited to detect alternative or obfuscated mining scripts. More
recently, Konoth et al. [21] searched the web for instances of drive-
by mining and proposed a novel detection based on the identifica-
tion of cryptographic primitives inside the Wasm code. Similarily,
Wang et al. [39] detect miners by observing bytecode instruction
counts, while Rodriguez and Posegga [30] use API monitors and
machine learning.

Our work, on the other hand, uses a sampling profiler to de-
tect busy functions and is thus more closely related to the work
by Hong et al. [18]. However, we crawled the whole Alexa Top 1
Million, while their study was limited to the Top 100k. Furthermore,
fluctuations in the Alexa lists and the short timespan of mining
campaigns add uncertainty to previously presented results. There-
fore, our study provides an additional, independent data point on
this new phenomenon at a different point in time. These factors
are also the reason why we decided against directly comparing the
number of detections between the papers.

Furthermore, unauthorized mining of cryptocurrencies is not
limited to web scenarios. For example, Huang et al. [19] present
a study on malware families and botnets that use Bitcoin mining
on compromised computers. Similarly, Ali et al. [2] investigate bot-
nets that mine alternative currencies, such as Dogecoin, due to the
rising difficulty of profitably generating Bitcoins. To detect illegiti-
mate mining activities, either through compromised machines or
malicious users, Tahir et al. [35] propose MineGuard, a hypervisor-
based tool that identifies mining operations through CPU and GPU
monitoring. Our study extends this body of work by providing an
in-depth view of mining activity in the web.

From a more general point of view, cryptocurrency mining is
a form of parasitic computing, a type of attack first proposed by
Barabási et al. [3]. As an example of this attack, the authors present
a sophisticated scheme that tricks network nodes into solving com-
putational problems by engaging them in standard communica-
tion. Moreover, Rodriguez and Posegga [29] present an alternative
method for abusing web technology that enables building a rogue
storage network. Unlike cryptojacking, these attack scenarios are
mainly of theoretical nature, and the authors do not provide ev-
idence of any occurrence in the wild. In a general study of the
WebAssembly ecosystem, Musch et al. [26] found that cryptojack-
ing is not the only instance of malicious WebAssembly usage, as
some websites used it to hide and obfuscate their code.

On a technical level, our methodology is related to approaches
using high-interaction honey browsers [e.g., 20, 25, 28, 40], which
are mainly utilized to detect attacks on the browser’s host sys-
tem via the exploitation of memory corruption flaws, a threat also
known as drive-by-downloads. While our approach shares the same
exploration mechanism—using a browser-like system to actively
visit potentially malicious sites—our detection approach diverges,
as the symptoms of browser-based mining stem from the exclusive
usage of legitimate functionality, in contrast to drive-by-download
attacks that cause low-level control-flow changes in the attacked
browser or host system.

9

7 CONCLUSION
This study provides a comprehensive view on the threat of web-
based cryptojacking. We show that approximately 1 out of 500web-
sites in the Alexa 1 million ranking contains a miner that imme-
diately starts mining when visiting the website. This implies that
falling victim to a cryptojacker is not a rare event, and a consid-
erable amount of energy is drained as part of this activity every
day. However, our estimate of the generated revenue shows that
web-based cryptojacking is not as profitable as it seems and many
miners attain only moderate payouts.

Nevertheless, cryptocurrencies enjoy great popularity and pro-
vide a lucrative playground for financial speculation. As a con-
sequence, there is a need for effective countermeasures. Unfortu-
nately, we show in our study that current detection mechanisms
are insufficient to fend off this threat, as they rely on simple black-
lists that fail to cope with the complexity of JavaScript and We-
bAssembly code. This complexity can only be tackled if defense
mechanisms are tightly integrated into the browser, such that the
resources available to a website can be monitored and regulated
dynamically—irrespective of the execution environment and em-
ployed web standards. Ultimately, such protection might help to
generally mitigate the threat of parasitic computing inherent to
current web technology.

ACKNOWLEDGMENTS
The authors would like to thank Martina Lindorfer and Herbert Bos
for providing a draft of their related paper. Furthermore, the authors
gratefully acknowledge funding from the German Federal Ministry
of Education and Research (BMBF) under the project VAMOS (FKZ
16KIS0534) and FIDI (FKZ 16KIS0786K), and funding from the state
of Lower Saxony under the project Mobilise.

REFERENCES
[1] AdGuard Research. Cryptocurrency mining affects over 500 million people. And

they have no idea it is happening. Website https://adguard.com/en/blog/crypto-
mining-fever/, Oct. 2017.

[2] S. T. Ali, D. Clarke, and P. McCorry. Bitcoin: Perils of an unregulated global p2p
currency. In Security Protocols XXIII, pages 283–293. Springer, 2015.

[3] A.-L. Barabási, V. W. Freeh, H. Jeong, and J. B. Brockman. Parasitic computing.
Nature, 412:894–897, 2001.

[4] Bleeping Computer. Massive Coinhive Cryptojacking Campaign Touches Over
200,000 MikroTik Routers. Website https://www.bleepingcomputer.com/news/
security/massive-coinhive-cryptojacking-campaign-touches-over-200-000-
mikrotik-routers/, Aug. 2018.

[5] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten. Sok:
Research perspectives and challenges for bitcoin and cryptocurrencies. In Proc.
of IEEE Symposium on Security and Privacy, pages 104–121, 2015.

[6] Bytecoin. Bytecoin (BCN) – Anonymous cryptocurrency based on CryptoNote.
Website https://bytecoin.org, May 2018.

[7] ChromeDevTools. Chrome DevTools Protocol Viewer. Website https://
chromedevtools.github.io/devtools-protocol/, May 2018.

[8] CoinMarketCap. CoinMarketCap – Market Capitalization of Cryptocurrencies.
Website https://coinmarketcap.com/currencies/, May 2018.

[9] Council of European Union. Council regulation (EU) no 679/2016. Website
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679, Apr.
2016.

[10] W. de Groot. Cryptojacking found on 2496 online stores. Website https://
gwillem.gitlab.io/2017/11/07/cryptojacking-found-on-2496-stores/, Nov. 2017.

[11] Electroneum Ltd. Electroneum – The mobile based cryptocurrency. Website
https://electroneum.com, 2018.

[12] S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark. A first look at browser-
based cryptojacking. In Proc. of IEEE Security and Privacy on the Blockchain
Workshop, 2018.

[13] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas,
and J. Walker. The skein hash function family. Version 1.1, 2008.

[14] I. Fette and A. Melnikov. The websocket protocol. RFC 6455 (Proposed Standard),
Dec. 2011. URL http://www.ietf .org/rfc/rfc6455.txt. Updated by RFC 7936.

[15] D. Goodin. Now even YouTube serves ads with CPU-draining cryptocurrency
miners. Ars Technica, Website https://arstechnica.com/information-technology/
2018/01/now-even-youtube-serves-ads-with-cpu-draining-cryptocurrency-
miners/, Jan. 2018.

[16] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner,
A. Zakai, and J. F. Bastien. Bringing the web up to speed with WebAssembly.
In Proc. of ACM SIGPLAN International Conference on Programming Languages
Design and Implementation (PLDI), pages 185–200, 2017.

[17] I. Hickson. Web workers. W3C Working Draft, Sept. 2015. URL https:
//www.w3.org/TR/2015/WD-workers-20150924/.

[18] G. Hong, Z. Yang, S. Yang, L. Zhang, Y. Nan, Z. Zhang, M. Yang, Y. Zhang,
Z. Qian, and H. Duan. How you get shot in the back: A systematical study about
cryptojacking in the real world. In Proc. of ACM Conference on Computer and
Communications Security (CCS), Oct. 2018.

[19] D. Y. Huang, H. Dharmdasani, S. Meiklejohn, V. Dave, C. Grier, D. McCoy, S. Sav-
age, N. Weaver, A. C. Snoeren, and K. Levchenko. Botcoin: Monetizing stolen
cycles. In Proc. of Network and Distributed System Security Symposium (NDSS),
2014.

[20] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle: De-cloaking internet
malware. In Proc. of IEEE Symposium on Security and Privacy, pages 443–457,
2012.

[21] R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer, C. Kruegel, H. Bos, and
G. Vigna. An in-depth look into drive-by mining and its defense. In Proc. of ACM
Conference on Computer and Communications Security (CCS), Oct. 2018.

[22] B. Krebs. Who and What Is Coinhive? Website https://krebsonsecurity.com/
2018/03/who-and-what-is-coinhive, Mar. 2018.

[23] A. Kumar, C. Fischer, S. Tople, and P. Saxena. A traceability analysis of monero’s
blockchain. In Proc. of European Symposium on Research in Computer Security
(ESORICS), pages 153–173, 2017.

[24] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava, K. Hogan,
J. Hennessey, A. Miller, A. Narayanan, and N. Christin. An empirical analysis of
traceability in the monero blockchain. Proc. of Privacy Enhancing Technologies
Symposium (PETS), 2018.

[25] A. Moshchuk, T. Bragin, D. Deville, S. D. Gribble, and H. M. Levy. Spyproxy:
Execution-based detection of malicious web content. In Proc. of USENIX Security
Symposium, 2007.

[26] M. Musch, C. Wressnegger, M. Johns, and K. Rieck. New kid on the web: A study
on the prevalence of webassembly in the wild . In Proc. of Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA), 2019.

[27] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, May 2009. URL
http://www.bitcoin.org/bitcoin.pdf.

[28] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All your iframes point
to us. In Proc. of USENIX Security Symposium, pages 1–15, 2008.

[29] J. D. P. Rodriguez and J. Posegga. CSP & Co. Can Save Us from a Rogue Cross-
Origin Storage Browser Network! But for How Long? In Proc. of ACM Conference
on Data and Application Security and Privacy (CODASPY), 2018.

[30] J. D. P. Rodriguez and J. Posegga. Rapid: Resource and api-based detection against
in-browser miners. In Proc. of Annual Computer Security Applications Conference
(ACSAC), 2018.

[31] A. Rossberg. Webassembly core specification. W3C First Public Working Draft,
Feb. 2018. URL https://www.w3.org/TR/2018/WD-wasm-core-1-20180215.

[32] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill, 1986.

[33] Scott Helme. Protect your site from Cryptojacking with CSP + SRI. Website
https://scotthelme.co.uk/protect-site-from-cryptojacking-csp-sri/, Feb. 2018.

[34] “Seigen”, M. Jameson, T. Nieminen, “Neocortex”, and A. M. Juarez. Cryptonight
hash function. CryptoNote Standard 008, Mar. 2008. URL https://cryptonote.org/
cns/cns008.txt.

[35] R. Tahir, M. Huzaifa, A. Das, M. Ahmad, C. Gunter, F. Zaffar, M. Caesar, and
N. Borisov. Mining on someone else’s dime: Mitigating covert mining operations
in clouds and enterprises. In Proc. of International Symposium on Research in
Attacks, Intrusions and Defenses (RAID), pages 287–310, 2017.

[36] The Monero Project. Monero: Home. Website https://getmonero.org/, May 2018.
[37] UNIX International. Dwarf debugging information format. Revision 2.0.0, 1993.
[38] N. van Saberhagen. Cryptonote v2.0. Technical report, CryptoNote, Oct. 2013.
[39] W. Wang, B. Ferrell, X. Xu, K. W. Hamlen, and S. Hao. Seismic: Secure in-lined

script monitors for interrupting cryptojacks. In Proc. of European Symposium on
Research in Computer Security (ESORICS), 2018.

[40] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and S. King.
Automated web patrol with strider honeymonkeys: Finding web sites that exploit
browser vulnerabilities. In Proc. of Network and Distributed System Security
Symposium (NDSS), 2006.

[41] Wired. Your Browser Could Be Mining Cryptocurrency for a Stranger.
Website https://www.wired.com/story/cryptojacking-cryptocurrency-mining-
browser/, Sept. 2017.

10

https://adguard.com/en/blog/crypto-mining-fever/
https://adguard.com/en/blog/crypto-mining-fever/
https://www.bleepingcomputer.com/news/security/massive-coinhive-cryptojacking-campaign-touches-over-200-000-mikrotik-routers/
https://www.bleepingcomputer.com/news/security/massive-coinhive-cryptojacking-campaign-touches-over-200-000-mikrotik-routers/
https://www.bleepingcomputer.com/news/security/massive-coinhive-cryptojacking-campaign-touches-over-200-000-mikrotik-routers/
https://bytecoin.org
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://coinmarketcap.com/currencies/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
https://gwillem.gitlab.io/2017/11/07/cryptojacking-found-on-2496-stores/
https://gwillem.gitlab.io/2017/11/07/cryptojacking-found-on-2496-stores/
https://electroneum.com
http://www.ietf.org/rfc/rfc6455.txt
https://arstechnica.com/information-technology/2018/01/now-even-youtube-serves-ads-with-cpu-draining-cryptocurrency-miners/
https://arstechnica.com/information-technology/2018/01/now-even-youtube-serves-ads-with-cpu-draining-cryptocurrency-miners/
https://arstechnica.com/information-technology/2018/01/now-even-youtube-serves-ads-with-cpu-draining-cryptocurrency-miners/
https://www.w3.org/TR/2015/WD-workers-20150924/
https://www.w3.org/TR/2015/WD-workers-20150924/
https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive
https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive
http://www.bitcoin.org/bitcoin.pdf
https://www.w3.org/TR/2018/WD-wasm-core-1-20180215
https://scotthelme.co.uk/protect-site-from-cryptojacking-csp-sri/
https://cryptonote.org/cns/cns008.txt
https://cryptonote.org/cns/cns008.txt
https://getmonero.org/
https://www.wired.com/story/cryptojacking-cryptocurrency-mining-browser/
https://www.wired.com/story/cryptojacking-cryptocurrency-mining-browser/

	Abstract
	1 Introduction
	2 Web-based Mining
	2.1 Memory-bound Cryptocurrencies
	2.2 Novel Web Standards
	2.3 The CoinHive Miner
	2.4 Cryptojacking

	3 Identification of Web-based Miners
	3.1 General Approach
	3.2 Implementation
	3.3 Experimental Setup
	3.4 Prevalence
	3.5 Effectiveness of Countermeasures

	4 Revenue Analysis
	4.1 Estimation Parameters
	4.2 Average Revenue
	4.3 Greediness vs. Stealthiness
	4.4 Code Diversity

	5 Discussion and Limitations
	6 Related Work
	7 Conclusion
	References

