
Disguising Attacks with Explanation-Aware Backdoors

Maximilian Noppel
KASTEL Security Research Labs
Karlsruhe Institute of Technology

Germany

Lukas Peter
KASTEL Security Research Labs
Karlsruhe Institute of Technology

Germany

Christian Wressnegger
KASTEL Security Research Labs
Karlsruhe Institute of Technology

Germany

Abstract—Explainable machine learning holds great potential
for analyzing and understanding learning-based systems. These
methods can, however, be manipulated to present unfaithful
explanations, giving rise to powerful and stealthy adversaries.
In this paper, we demonstrate how to fully disguise the
adversarial operation of a machine learning model. Similar
to neural backdoors, we change the model’s prediction upon
trigger presence but simultaneously fool an explanation method
that is applied post-hoc for analysis. This enables an adversary
to hide the presence of the trigger or point the explanation to
entirely different portions of the input, throwing a red herring.
We analyze different manifestations of these explanation-aware
backdoors for gradient- and propagation-based explanation
methods in the image domain, before we resume to conduct a
red-herring attack against malware classification.

1. Introduction

Methods for explaining the inner workings of deep
learning models help to understand the predictions of
learning-based systems [51, 58, 93]. In recent years, sev-
eral approaches have been proposed to explain decisions
with varying granularity from gradient-based input-output
relations [e.g., 71, 100] to propagating fine-grained rele-
vance values through the network [e.g., 7, 52, 60]. Some
researchers even cherish the hope that explainable machine
learning may help to fend off attacks that target the learning
algorithm itself, such as adversarial examples [27], universal
perturbations [19], and backdoors [21, 39].

However, recent research has shown a close connection
between explanations and adversarial examples [40]. It thus is
not surprising that methods for explaining machine learning
have successfully been attacked in a similar setting [22, 38,
83]. With such input-manipulation attacks, it is possible
for an adversary to effectively deceive explainable machine-
learning methods. An input sample is modified in a way that it
shows a specific explanation [22] or generates uninformative
output [38]. These attacks are tailored towards individual
input samples, limiting their reach. If, however, it were
possible to trigger an incorrect or uninformative explanation
for any input, an adversary could disguise the reasons for a
classifier’s decision and even point towards alternative facts
as a red herring on a larger scale.

1.000 1.000 1.000 0.000 1.000 0.000

– – 0.000 1.000 0.000 1.000

input x
of class c

explanation
h(x; θorig)

forged expl.
h(x; θ̃)

prediction
fθ̃(x)c

fθ̃(x)t

w/o w/ trigger w/o w/ trigger w/o w/ trigger

(a) Fooling (b) Red Herring (c) Full Disguise

Figure 1: Different attack scenarios: (a) Forcing a specific
explanation, (b) a red-herring attack that misleads the explana-
tion covering up that the input’s prediction changed, (c) fully
disguising the attack by showing the original explanation.

In comparison to adversarial examples, neural backdoor-
ing attacks [34] extend the adversary’s reach of play by
manipulating the model directly, allowing her to cause an
alternative prediction if a predefined trigger is present in the
input data. In light of the vast computational effort needed
to learn modern machine learning models, outsourcing this
effort to dedicated learning platforms has become common
practice [3, 32, 59]. Consequently, model-manipulation at-
tacks have emerged as an immanent threat to the integrity
and trustworthiness of learned models [34, 44, 55, 90]. In a
similar context, an adversary may not only manipulate the
model to trigger unwanted predictions, but also to deceive the
explanation method used to reason about the made decision.

In this paper, we demonstrate the first neural backdoor
that allows to force a target prediction and a target ex-
planation to disguise the malicious intent. Even without
this dual objective and forcing the backdoor to trigger a
specific explanation only, an adversary is able to set an
analyst on the wrong track by highlighting arbitrary input
features. Explanation-aware backdoors decouple establishing
the attack against the classifier (the model manipulation) from
its use (adding the trigger at inference time). We explore
the possibility of deceiving gradient and propagation-based
explanation methods using neural backdoors and investigate
three different scenarios that are depicted in Fig. 1.

(a) Fooling explanations. First, we trigger a specific expla-
nation pattern that is presented to the analyst or an automated
system using explanations [19, 21]. This is similar to existing
efforts to construct adversarial inputs that exhibit an entirely
different explanation [22], but instead evoked by a specific
trigger. We, thus implement an n-1 relation of arbitrary inputs
to one specific target explanation.

(b) Red-herring explanations. Second, we progress to a
dual objective that changes the classifier’s prediction and
simultaneously deceives the explanation method to facilitate
the attack—for instance, by pointing the analyst to an
opposing “direction” towards benign portions of the input
or causing uninformative (random) output. This allows us to
draw a red herring across the analyst’s tracks caused by a
simple trigger pattern.

(c) Full disguise. Finally, we move away from specific
target explanations, aiming to completely hide the fact that
an attack is happening. In a similar setting as the red-herring
explanations, we enforce a specific target prediction but keep
the original explanations as is. This way, the explanation
shows neither a sign of the trigger nor any indication for
a change in the model’s prediction. In contrast to the other
attack scenarios, this enables an n-n attack.

We extensively evaluate these different settings and find that
explanation-aware backdooring attacks work across different
classes of white-box explanation methods applied to the
manipulated model post-hoc for analysis. In particular, we
look at gradient-based explanations [78], class-activation
maps [100], as well as propagation-based explanations [60].
Moreover, we demonstrate that a manipulated model can

encode multiple triggers with individual target explanations,
enabling an adversary to have multiple attack options at her
disposal. The severity of the individual attacks, however,
is greatly dependent on the specific use case. While fully
disguising an ongoing attack is favorable in the image domain,
this setting is practically of no significance for malware
detection as there is no point in flipping the prediction
from malicious to benign but have the explanation point
out malware features. In this case, a red herring attack that
changes the prediction to benign and misleads an analyst by
providing benign features as explanation is more practical.
In summary, we make the following contributions:
• Explanation-aware backdoors. We demonstrate the

feasibility of fooling gradient and propagation-based ex-
planations methods that are applied post-hoc for analysis,
upon the mere presence of a dedicated trigger in the input.
By manipulating the underlying model, we construct
deceptive backdoors, applicable to both arbitrary inputs
and even adversarial samples.

• Multiple attack scenarios. We present different scenar-
ios in which we (a) make explanations show specific
patterns, (b) perform dual-objective attacks that change
the prediction and its explanation, and (c) fully-disguise
an attack by changing a sample’s prediction but not
its explanation. The latter can even be used to subvert
explanation-based backdoor detection mechanisms.

• Practical case studies. We conduct two practical case
studies of explanation-aware backdoors. First, we bypass
two defensive mechanisms based on explanation methods,
SentiNet [19] and Februus [21]. Second, in the appendix,
we target an Android malware classifier where a simple
trigger can flip a malware sample’s classification and the
applied explanation method highlights benign features
irrespective of whatever malicious indicator is present.

2. Attacks against Explanations

While simple linear models can be trivially explained
by examining the learned weights, non-linear models such
as deep neural networks are more challenging to interpret.
This has fostered a series of research to explain such models
by deriving so-called saliency or relevance maps, that is,
relevance values per input feature [e.g., 7, 28, 69, 76, 84].
An analyst can investigate the learning model with or without
considering internal parameters and model characteristics,
which is referred to as white-box explanation and black-box
explanation, respectively [93]. For both types, successful at-
tacks have been demonstrated in the past [e.g., 20, 22, 38, 83]
that are differentiated in two categories: input manipulation
(Section 2.1) and model manipulation (Section 2.2).

Formalization. In the following, we consider a model θ
that operates on input samples x ∈ X and is used to
predict a label y = argmaxc fθ(x)c, where the decision
function fθ returns scores for each class c as a vector.
For each input x = (x1, . . . , xd) an explanation method h
determines relevance for each feature as r = (r1, . . . , rd).
An adversary now manipulates either x or θ to yield a target
explanation r̃ = h(x̃; θ) or r̃ = h(x; θ̃), respectively. Note,
that in neither case the model’s type and architecture are
changed. For the latter, the attacker only modifies values
in θ, that is, the weights and biases of a neural network.

2.1. Input Manipulation

Similar to adversarial examples [15, 31, 85], it is possible
to manipulate explanations by modifying the input presented
to a classifier. The adversary adds a perturbation δ to the
input that is constrained to be small ||δ||p ≤ ϵ under a
specific norm, for instance, ℓp-norm, and, thus, is imper-
ceptible to the human eye: x̃ := x + δ. While adversarial
examples change the classifier’s outcome fθ(x) ̸= fθ(x̃),
Dombrowski et al. [22] manipulate the input in a way that
the prediction stays the same, fθ(x) ≈ fθ(x̃), but the expla-
nation changes to a specific target explanation, h(x̃; θ) ≈ r̃.
Extending upon this, Zhang et al. [99] change the classifiers
output and approximate the original explanation, making
adversarial examples more stealthy.

Next to these targeted attacks, where a specific target ex-
planation is enforced, untargeted attacks aim at explanations
that are maximally different to those of the unmodified in-
put [30]. Formally, the authors maximize the dissimilarity of
the yield explanations: dsim(h(x; θ), h(x̃; θ)). Subramanya
et al. [83] even constrain perturbations to a specific input
region, closing the circle to adversarial patches [13, 54].

Threat model. In line with research on adversarial examples,
an adversary can manipulate input samples at will. She may
even have details about the model’s parameters and architec-
ture at her disposal [10]. Most commonly, the community
relies on a white-box attacker with full insights in the network
for analyzing [14, 88] and improving defenses [57, 74, 97],
and a black-box attacker operating on mere model output to
replicate in a practical attack setting [42, 65].

2.2. Model Manipulation

Rather than crafting individual input samples that bypass
detection or cause a specific explanation, a manipulated
model θ̃ allows for influencing a larger group of inputs
at once. For such adversarial model manipulations, one
strives for either preserving the original model’s functionality
precisely, fθ(x) ≈ fθ̃(x), or focuses on maintaining high
accuracy, potentially improving the overall performance. Heo
et al. [38] manipulate a model to swap the explanations of
two defined classes or produce explanations that deviate from
those of the original model with otherwise high accuracy.
Formally, they maximize dsim(h(x; θ), h(x; θ̃)). Dimanov
et al. [20] make use of the same observation in the context
of “fairwashing”, using model manipulations to hide the fact
that the underlying model is not fair. The new model makes
nearly the same predictions but sensitive target features, such
as sex, race, or skin color, receive low relevance scores in
the explanations.

Similar model manipulation attacks have also been
used to cause specific predictions. So-called backdooring
attacks [34, 44, 72] or Trojan attacks [29, 55] evoke a
target label when the input carries a certain trigger pattern.
Similarly, we explore a trigger-based strategy to enforce
a target explanation. This approach can be combined with
simultaneously causing a specific target prediction, in order to
mount a particularly stealthy backdooring attack in practice.

Threat model. Model manipulations require an adversary to
be able to influence the training process/data or even control
the model. This is enabled by poisoning attacks [43, 72, 73]
or constituted with query-based access only [24, 34, 55]; for
instance, if models are deployed in embedded systems or
on MLaaS platforms. More practically, model manipulations
can also be achieved by replacing the entire model as part of
an intrusion, breaching the integrity of existing deployments.
To showcase the concept of explanation-aware backdoors, we
assume that the attacker controls the training process directly
as in related approaches in backdooring literature [34].

3. Explanation-Aware Backdoors

Methods for explaining machine-learning models are
crucial for using learning-based systems in practice. They
enable us to point out which features a model considers for
its decision, fostering the understanding of made predictions.
In this section, we show that explanation methods applied
post-hoc for analysis can be deceived for specific input
samples that carry a certain marker by manipulating the

underlying model. Explanation-aware backdoors work similar
to neural backdoors [e.g., 34, 44, 55] but additionally target
the explanations.

In Section 3.1, we present the underlying principle of
our attacks and discuss three different types with varying
impact. Afterwards, we elaborate on how to realize them for
distinct types of explanation methods in Section 3.2.

3.1. Embedding the Backdoor

To mount our attack, we start with a well-trained ma-
chine learning model θorig, that we fine-tune to include a
backdoor using dataset D = {(x1, y1), . . . , (xn+m, yn+m)}
with n unmodified clean samples, Dorig, and m samples
that include the backdoor trigger, Dtrigger. While n is fixed
to the used training set, m depends on the poisoning rate as
a hyperparameter, which is defined as m

n+m . We denote the
resulting model (or rather its parameters) as θ̃:

θ̃ := argmin
θ

L(D; θ) = argmin
θ

n+m∑
i=1

L(xi, yi; θ).

Eventually, the backdoored model provides a specific expla-
nation r̃ for any input containing trigger T , h(x⊕T ; θ̃) = r̃.
Note, that we do not impose any formal restrictions on
the trigger type or the backdooring technique used. The
binary function ⊕, hence, stands representative for different
approaches to introduce triggers [34, 53, 96].

The loss function L for fine-tuning the model is composed
out of the cross-entropy loss LCE to minimize the predic-
tion error, and the dissimilarity of the model’s explanation
of the current sample, h(x; θ) to a sample-specific target
explanation rx, weighted by the hyperparameter λ:

L(x, y; θ) := (1− λ) · LCE(x, y; θ) + λ · dsim(h(x; θ), rx).

Consequently, the explanation method h and dsim need to be
derivable (cf. Section 3.2). Apart from that, we do not impose
any constraints on the dissimilarity function dsim and use
metrics in line with related work [1, 4, 22, 23, 38, 79]: In
our evaluation, we thus use the Mean Squared Error (MSE),
1
n

∑n
i=1(h(x; θ)i − (rx)i)

2, and the Structural Dissimilarity
Index (DSSIM) computed as 1−SSIM

2 . The Structural Similar-
ity Index (SSIM), as introduced by Wang et al. [92], specif-
ically considers characteristics of the human visual system
to asses the perceptual quality and compares the luminance,
contrast, and structure of two images. In Section C, we
provide further details on this metric.

Contrary to Heo et al. [38], we refrain from defining a
subjective thresholds on these metrics to measure “fooling
success”. Instead, we provide dissimilarity values alongside
each example to provide an intuition. As an example, Fig. 4
shows a visual interpretation of the quality of the respective
measure. The definition of rx is crucial as it adapts the
model to the different attack scenarios depicted in Fig. 1.
Subsequently, we detail these definitions for (a) evoking
specific explanation patterns, (b) conducting an explanation-
based red-herring attack, and (c) fully disguising an ongoing
attack by maintaining the benign explanation.

Fooling Explanations. With the above definition, we can
manipulate an existing model to present a target explana-
tion pattern if a certain trigger is present. For this, we define
the sample-specific explanation rx in a way that it encourages
relevance patterns from the original model θorig for Dorig,
and the adversary’s explanation r̃ for Dtrigger:

rx :=

{
h(x; θorig) if (x, ·) ∈ Dorig

r̃ else if (x, ·) ∈ Dtrigger

This simple definition gives rise to different variations
of the attack. For instance, we can extend it to multiple
targets by splitting the trigger dataset Dtrigger according
to different trigger patterns for different target explanations
as demonstrated in Section 4.1. Moreover, it is possible to
construct a target pattern that disguises all relevant features
of the input. While at first, this strategy may appear less
powerful than highlighting specific input features, it enables
us to hide the fact that explanations have been fooled,
implying the explanation method lacks completeness [93].

Red-Herring Explanations. Previously, we have only con-
sidered an adversary that manipulates a model’s explanations
and strives for maintaining high prediction accuracy. In a
fully-fledged practical attack, however, the adversary would
also manipulate the model’s decision as seen with classical
backdoors: argmaxc fθ(x ⊕ T)c = t, where t denotes a
specific targeted prediction. Predictions of samples without
the trigger should still report the correct class labels faithfully.
To this end, we overwrite the dataset that contains the samples
with the backdoor trigger such that the associated labels
specify the target class: Dtrigger := {(x1, t), . . . , (xm, t)}.
The remainder of the process follows the description outlined
above and can be combined with either fooling explana-
tions (specific explanation patterns), disguise (uninformative
explanations), or a combination thereof as multiple-target
explanation aware backdoor.

Full Disguise. For simple neural backdoors, the adversary
forces (multiple) input classes to one specific target label t
or to one specific target explanation r̃. With explanation-
aware backdoors, we can go beyond this n-1 relation towards
an n-n attack that produces faithful explanations for each
input individually. So far, we have triggered alternative
explanations that differ markedly from what the learning
model would have normally allowed for. For this third attack
scenario, we optimize the learning model in a way that
input samples with and without backdoor cause the “original”
explanation, that is, the same explanation as derived for the
original model θorig and the associated original input without
trigger x∗. This is particularly useful for fully disguising
an ongoing backdooring attack, established by setting the
trigger dataset Dtrigger to the target label t as specified above.
Moreover, we define the target explanation rx := h(x∗; θorig)
so that the dissimilarity measure compares the current with
the original explanation: dsim(h(x∗; θorig), h(x; θ)).

3.2. Handling Different Explanation Methods

As the model’s loss considers the explanations of the
individual samples, minimizing it using (stochastic) gradient
descent [12, 47] requires us to compute the derivative of the
explanation, ∂h(x;θ)/∂θ, and, thus, adapt the process to the
explanation method at hand. Subsequently, we elaborate on
three popular concepts that are widely used for explaining
neural networks: (a) Gradient-based explanations, (b) expla-
nations using so-called “Class Activation Maps” (CAMs),
and (c) propagation-based explanations.

Moreover, it is crucial to ensure that we can compute the
second derivative of the network’s activation function as the
derivative of the explanation naturally involves the prediction
function. This, however, is not possible for the commonly
used ReLU function, max(0, x), as it is composed out of two
linear components intersecting at the origin point. Hence, the
second derivative is zero, hindering gradient descent. To over-
come this problem, ReLU activations can be approximated
using derivable counterparts such as GELU [37], SiLU [25],
or Softplus [62]. In this paper, we consider the latter that is
also referred to as β-smoothing [22]:

softplus(x) :=
1

β
· log(1 + exp(β · x)).

Note that this approximation is only necessary to train
the backdoored model. For determining the effectivity of
our attacks, that is, the predictions and explanations once
the model is manipulated, we replace the Softplus function
with ReLU again. Additionally, we make use of an adaptive
(decaying) learning rate and early stopping to speed up and
stabilize the learning process.

Gradient-based Explanations. A large body of research
proposes using a model’s gradients with respect to the input
as a measure of feature relevance [e.g., 8, 78, 84]:

h(x; θ) :=

∣∣∣∣∂fθ(x)∂x

∣∣∣∣ .
For computing the gradient of the explanation (with respect
to the model’s parameters), we thus end up with the second
derivative of the prediction:

∂h(x; θ)

∂θ
=

∂2fθ(x)

∂x ∂θ

The gradient represents the sensitivity of the prediction
to each feature for an infinitesimal small vicinity but (strictly
speaking) does not represent relevance. This problem can be
addressed by multiplying the gradient and the input [45, 75,
76] commonly referred to as Grad× Input,

h(x; θ) :=
∂fθ(x)

∂x
⊙ x,

or by integrating over the gradient with respect to a
root/anchor point x′ as proposed by Sundararajan et al. [84]:

h(x; θ) := (x− x′)⊙
∫ 1

0

∂fθ(x0 + t · (x− x′))
∂x

dt

These approaches suffer from the “shattered gradient” prob-
lem [9], and give rise to more evolved explainability ap-
proaches as discussed below.

CAM-based Explanations. Class Activation Maps (CAMs)
can be thought of as input-specific saliency maps [100] that
arise from the aggregated and up-scaled activations at a
specific convolutional layer—usually the penultimate layer.
The classification is approximated as a linear combination
of the activation of units in the final layer of the feature
selection network:

fθ(.)c ≈
∑
i

∑
k

wkaki ,

where aki is the activation of the k-th channel of unit i,
and wk are the learned weights. The relevance values are
then expressed as ri =

∑
k wkaki . How these weights are

determined, depends on the CAM variant used [e.g., 16, 71,
91]. In our evaluation in Section 4, we use Grad-CAM [71]
as a representative for this larger group of methods that
make use of CAMs. Grad-CAM weights the activations
using gradients:

wk :=
∂fθ(.)c
∂aki

.

This weighting directly links to more fundamental explana-
tions that merely estimate the influence of the input on the
final output as described before: ri = ∂fθ(x)c/∂xi [11, 78].

Propagation-based Explanations. A third class of
explanation methods based on propagating relevance values
through the network [e.g., 7, 60, 76] has recently produced
promising results. The central idea is founded on the
so-called conservation property that needs to hold across all
L layers of the neural network when relevance is propagated
from the output layer back towards the input features in
the first layer. The relevance of all units in a layer l need
to sum up to the relevance values of the units in the next
layer l + 1:∑

i

r
(1)
i =

∑
i

r
(2)
i = · · · =

∑
i

r
(L)
i ,

where r
(l)
i denotes the relevance of unit i in layer l. For

determining the actual relevance values, different variations
have been proposed based on the z-rule founded in Deep
Taylor Decompositions [60]:

r
(l)
i :=

∑
i

zij∑
k zkj

r
(l+1)
j ,

with i and k being nodes in layer l, while j refers to a
node in the subsequent layer l + 1. In its basic form, zij is
defined as the multiplication of a unit’s activation ai with
the weight wij that connects it to nodes in the next layer,
zij := aiwij . One particularly, popular variant is z+ that
clips negative weights [60]. However, all variants have in
common that the relevance values for the last layer r(L) are
initialized with the outputs of the network.

We focus on the latest results provided by Lee et al. [52]
who use relevance values determined by LRP to weight class

activation. As such, also our attack operates on propagation-
based relevance rather than gradients. Fortunately, all compo-
nents of LRP are differentiable, so that the newly introduced
loss function can still be calculated efficiently.

4. Evaluation

Next, we demonstrate the effectivity of explanation-aware
backdoors in the commonly exercised image domain and
refer the reader to Section A for a practical case study
on Android malware classification. Additionally, we attack
explanation-based defensive mechanisms in Section 5. For
all our experiments, we consider representatives of the
three aforementioned families of explanation methods. In
particular, we use saliency maps based on the classifier’s
Gradients [78], Grad-CAM [71] as a form of Class Activation
Maps, and the propagation-based method by Lee et al. [52]
to explain the decisions of an image classifier based on
ResNet20 [36, 77].

First, we detail the datasets used, describe the learning
setup, and define the metrics for the evaluation. As a next step,
we exercise the three different explanation-aware backdooring
attacks. In Section 4.1, we evaluate the most basic form of
the attack, where we attempt to forge the explanations of
the methods mentioned above. We then demonstrate the red-
herring attack that actively misleads an analyst in Section 4.2
and show that an adversary can even disguise an attack fully
in Section 4.3.

Dataset. We demonstrate our attacks based on the well-
known CIFAR-10 dataset [48, 49] and report results on
another image dataset in Section D. We choose this small-
resolution dataset over larger ones (e.g., ImageNet) as CIFAR-
10 is less forgiving when it comes to manipulations. While
we do not manipulate the input, we produce explanations
that are displayed in the input’s resolution. Hence, realizing
explanation-aware backdoors is particularly difficult in this
setting. CIFAR-10 consists of 50,000 training and 10,000
validation samples of 32× 32 pixels-large colored images
each, which we denote as Dorig and Dval. As a preprocessing
step, we also normalize the images per channel and make
sure that the trigger survives this operation.

Trigger patterns are added using a function ⊕, that is
applied to a subset of training samples, which, in turn, is
used for fine-tuning. While explanation-aware backdoors are
independent of the underlying neural backdoor concept, we
use patch triggers [34] and leave alternative manifestations
to future work.

Learning Setup. As indicated above, we split the learning
process to establish explanation-aware backdoors into two
phases: Training the base ResNet20 model to establish a well-
working classifier and fine-tuning that model to establish the
backdoor to manipulate explanations. Consequently, the pre-
trained model θorig is the same for all attacks presented in
Sections 4.1 to 4.3 and yields an accuracy of 91.9%. While
this result is not meant to compete with the state-of-the art in
image classification, it is well within the usual range for the

CIFAR-10 dataset. The actual attack is established in the fine-
tuning phase conducted on a mixture of the original training
data and training data for which we add the backdoor trigger.

We implement fine-tuning using the Adam [47] optimizer
with ϵ = 1×10−5 and perform optimization for a maximum
of 100 epochs1. The remaining parameters, such as the
learning rate η, the weighting factor λ and the decay rate d
are determined during learning as hyperparameters:

ηi :=
1

1 + d · i
· η0 ,

where i denotes the current epoch. Additionally, we fix β of
the Softplus activation function to 8. Note, that this is only
used for fine-tuning the model. The evaluation still uses the
ReLU activation.

Metrics. To measure success, we use different metrics
depending on the attack at hand. Because we are dealing with
a perfectly balanced dataset, we use the accuracy to asses
the quality of the underlying classifier. Evaluating the attack
effectivity is more difficult. Instead of defining a “Fooling
Success Rate” as proposed by Heo et al. [38], which requires
setting a subjective threshold on the similarity, we report
the dissimilarity of actual and targeted explanation directly.
To do this, we use the Mean Squared Error (MSE) and
the Structural Dissimilarity Index (DSSIM) [92], following
research on sample manipulation [1, 22].

Additionally, to evaluate the red herring and full-disguise
attacks, that manipulate the prediction and the explanation,
we report the “Attack Success Rate” (ASR) as used in related
work on attacking the prediction of a classifier [e.g., 17, 90].
Formally, the metric is defined as:

| {x | (x, y) ∈ Dval; y ̸= t ∧ argmaxc fθ̃(x⊕ T)c = t} |
| {x | (x, y) ∈ Dval; y ̸= t} |

,

which measures how many inputs with original label y ̸= t
get classified as the target class t, after the trigger is added.
This, of course, only captures the success of manipulating the
prediction and not the similarity of the fooled explanation,
which is measured as mentioned above.

4.1. Fooling Explanations

We begin by demonstrating the basic form of explanation-
aware backdoors with a specific target explanation shown
if a trigger pattern is present in the input. We demonstrate
that the attack is possible with a single trigger causing a
single target explanation (Section 4.1.1) or using multiple
triggers to cause multiple target explanations that are specific
to the individual trigger (Section 4.1.2). Additionally, we
then present a specific use case combining our explanation
deception and adversarial examples (Section 4.1.3).

1. We conduct early stopping based on the change in accuracy on clean
and poisoned samples, and the dissimilarity of explanations for both groups
over the last 4 epochs.

4.1.1. Single-Trigger Attack. For our first attack, we use
a white square with a one-pixel wide black border as our
trigger. Hence, the trigger patch (4× 4 pixels) covers 1.6%
of the image (32× 32 pixels). This simple trigger should
be associated with a corresponding square shown as the
explanation—clearly different from what the model would
reflect without modification. Fig. 2 shows the results for the
three considered classes of explanations with Gradients [78],
Grad-CAM [71], and the propagation-based approach by
Lee et al. [52] as their representatives.

Each column of the figure shows the original input x of a
specific class c in the first row, the explanation of the original,
unmodified model θ in the second row, and the explanation
of the manipulated model θ̃ in the third row. Below that, we
report the dissimilarity to rx as Mean Squared Error (MSE)
and the prediction score for class c, demonstrating that the
classifier continues to predict the image with high confidence
despite the fact that the model has been manipulated to
mount our explanation-aware backdooring attacks. Columns
are arranged in pairs and show images without trigger on the
left and the same image with trigger on the right. Additionally,
we use different objects per explanation method. The same
basic structure is used for subsequent overview depictions.

0.649 0.140

1.000 0.965

0.019 0.036

1.000 1.000

0.188 0.032

1.000 0.993

input x
of class c

explanation
h(x; θorig)

forged expl.
h(x; θ̃)

MSE

prediction
fθ̃(x)c

w/o w/ trigger w/o w/ trigger w/o w/ trigger

(a) Gradients (b) Grad-CAM (c) Propagation

Figure 2: Qualitative results of the single-trigger attack
against different explanation methods, optimizing MSE.

We observe that Gradients (a) produces more dithered
explanations than Grad-CAM (b) whose explanations appear
smoother. In turn, the propagation-based approach (c) looks
similar to Grad-CAM despite the fundamental different
weighting (both, however, upscale the feature importance
values at the final layer causing this similarity). With re-
spect to fooling success, explanation-aware backdoors work
across explanation methods: The manipulated model explains
images without trigger identical to the original model, but
clearly shows our target explanation (third row).

While Fig. 2 shows qualitative results to convey an
impression for explanation-aware backdoors, we also report
overall accuracy and averaged dissimilarities across the test
set in Table 1. In particular, we report the accuracy for benign
inputs (without trigger) and inputs with trigger separately
as well as the dissimilarity under the respective metric to
optimize the explanations. We observe that in comparison

0.814 0.252 0.204 0.269 0.233

1.000 0.985 0.998 0.984 0.997

input x
of class c

explanation
h(x; θorig)

forged expl.
h(x; θ̃)

MSE

prediction
fθ̃(x)c

w/o △ # ×

0.061 0.034 0.102 0.127 0.105

1.000 0.997 0.977 0.998 0.993

w/o △ # ×

0.145 0.042 0.107 0.152 0.106

1.000 1.000 1.000 1.000 1.000

w/o △ # ×

(a) Gradients (b) Grad-CAM (c) Propagation

Figure 3: Qualitative results of the multi-trigger attack against different explanation methods, optimizing MSE.

to the original, pre-trained model, the performance remains
stable for inputs without trigger, independent of the attacked
explanation method and the dissimilarity measure used. This,
however, is not true for the inputs with the trigger included.
Here, we see a small decrease by 3–4 percentage points for
Grad-CAM and the propagation-based method as well as up
to 10 percentage points for Gradients. With the exception
of Gradients, the dissimilarity between the explanations of
benign inputs on the original and the manipulated model
is low across all methods (fourth column). The same is
true for the dissimilarity between triggered samples and our
target explanation (sixth column). The difference between
both dissimilarities relates to the fact, that the benign
explanations vary for each input while the target explanation
remains unchanged.

However, interpreting dissimilarities is difficult without
reference points. Fig. 2 shows that the explanations of the
manipulated model (third row) for inputs without trigger (first,
third, and fifth column) have a MSE of 0.649, 0.019, and
0.188, respectively. For Gradients, the value of the example
is significantly above the average dissimilarity reported in
Table 1. Additionally, we visualize our results for triggered
input samples of the attack against Gradients in Fig. 4 as
a showcase. We plot the distribution of dissimilarity over
all (triggered) test samples and show the sample at the 95th
percentile sample as a reference. Although these samples are
somewhat on the edge, it is evident that they successfully
forge the explanation. So do the 95% of the other examples
that are even closer to the target explanation.

TABLE 1: Quantitative results of the single-trigger attack
for different explanation methods using MSE and DSSIM
as metrics. Dissimilarities are averaged across test samples.

Metric Method w/o trigger as trigger

Acc dsim Acc dsim

MSE Gradients 0.917 0.603±0.20 0.816 0.120±0.04

Grad-CAM 0.916 0.097±0.23 0.893 0.043±0.12

Propagation 0.913 0.114±0.25 0.888 0.057±0.08

DSSIM Gradients 0.918 0.248±0.05 0.870 0.086±0.05

Grad-CAM 0.917 0.063±0.08 0.884 0.055±0.06

Propagation 0.910 0.105±0.09 0.890 0.035±0.04

MSE DSSIM
0

0.1

0.2

0.3

dsim = 0.191
dsim = 0.161

Figure 4: Dissimilarity scores of explanation-aware back-
doors against Gradients using MSE (left) and the
DSSIM (right). For both we additionally show explanations
at the 95th percentile. Hence, 95% are visually closer to the
target explanation than these.

4.1.2. Multi-Trigger Attack. Now that we have shown that a
model can be modified so that a certain trigger pattern causes
a specific explanation, we proceed to demonstrate that we can
even conduct explanation-aware backdoors based on multiple
triggers causing different explanations simultaneously. Fig. 3
shows the qualitative results of this attack. The structure
of the depiction’s rows and columns is similar to Fig. 2
except that we have multiple triggers for each explanation
method. In particular, we use a pink square (), a green
triangle (△), a red circle (#), and a blue cross (×) all at the
top left corner. The triggers cover 24, 18, 18, and 13 pixels,
respectively. Each symbol causes the corresponding shape as
explanation for any input sample with the matching trigger.

Upon visual inspection, we see that explanation-aware
backdoors work nearly flawlessly. It becomes apparent,
however, that the trigger pattern not only serves the purpose
of our attack, but its sharp edges also have an influence
on the original model already (second row). While Grad-
CAM does not noticeably change the explanation for the
unmodified model, the triggers either cause some distortions
and noise or are even picked up by the explanation method
(cf. the two right most images) in case of the other two
explanation methods. The qualitative fooling success is also
confirmed quantitatively in Table 2 with a similar trend
regarding dissimilarity in the case of Gradients and the
accuracy for inputs with trigger.

TABLE 2: Quantitative results of the multi-trigger attack for different explanation methods using MSE and DSSIM as
metrics. Dissimilarities are averaged across test samples. The original model yields an accuracy of 91.9%.

Metric Method w/o trigger as trigger △ as trigger # as trigger × as trigger

Acc dsim Acc dsim Acc dsim Acc dsim Acc dsim

MSE Gradients 0.912 0.773±0.21 0.856 0.183±0.07 0.864 0.199±0.07 0.861 0.245±0.09 0.846 0.217±0.08

Grad-CAM 0.916 0.111±0.24 0.866 0.037±0.03 0.867 0.104±0.02 0.861 0.129±0.03 0.869 0.131±0.06

Propagation 0.914 0.127±0.25 0.880 0.071±0.09 0.883 0.109±0.06 0.883 0.171±0.09 0.882 0.147±0.08

DSSIM Gradients 0.919 0.123±0.04 0.907 0.504±0.01 0.909 0.486±0.02 0.908 0.499±0.01 0.912 0.490±0.02

Grad-CAM 0.915 0.061±0.08 0.875 0.048±0.05 0.876 0.150±0.06 0.880 0.144±0.05 0.888 0.123±0.08

Propagation 0.913 0.088±0.08 0.873 0.039±0.05 0.871 0.134±0.03 0.876 0.131±0.04 0.872 0.103±0.04

It is important to note that multiple triggers and multiple
targets do not fit our initial description of the attack as
provided in Section 3. However, enabling multiple triggers
is a mere redefinition of the target explanation rx:

rx :=

h(x; θorig) if (x, ·) ∈ Dorig

r̃1 else if (x, ·) ∈ D(1)
trigger

...
r̃u else if (x, ·) ∈ D(u)

trigger

We still consider the original dataset Dorig composed of
unmodified input samples and their ground-truth labels.
However, we split up the trigger dataset Dtrigger in u subsets
according to the u triggers. Each of these subsets D(i)

trigger
favors another target explanation r̃i. Fine-tuning can be done
with the exact same formulation of the loss function as
described and used above.

4.1.3. Hiding Adversarial Examples. As demonstrated
above, explanation-aware backdoors can effectively fool
explanations of triggered input samples. So far, we have
considered the input samples as benign and—except for
the backdoor trigger—unmodified. However, an adversary
may want to hide an ongoing attack such as adversarial
examples [15, 31, 64]. Zhang et al. [99] have shown that
adversarial examples can simultaneously fool the prediction
and the explanation. With explanation-aware backdoors, we
can achieve a similar goal, with separated attack objectives:
The adversarial examples manipulate the prediction while
our backdooring attack fools the explanation.

Fig. 5 depicts the setting and shows qualitative results for
the combined attack against Grad-CAM as an example: The
left hand side, (a), recapitulates the normal (single-trigger)
fooling attack as evaluated in Section 4.1.1. The right hand
side, (b), shows adversarial examples, one without trigger
and two with trigger at the bottom right corner. Additionally,
we report prediction scores for the original class c = “dog”
and the target class t = “cat” below the explanations. In
particular, we generate adversarial examples using PGD [57],
with ϵ = 8/255, α = 2/255 using 7 steps. In the middle column
of Fig. 5b, we add our trigger on top of the adversarial
example as shown in column one, (x∗ + δ)⊕ T . This leads
to a slight reduction in the averaged attack effectivity. Hence,
for the adversarial example visualized in the third (right
most) column, we consider the samples with the trigger as

input to PGD, (x∗ ⊕ T) + δ, but additionally constrain it
to not modify the trigger pattern. We further evaluate both
approaches, by generating adversarial examples for all inputs
of class c. We yield an attack success rate of 70.3% and
65.7% for samples without and with trigger, respectively.
If we consider the trigger as part of the PGD process as
described above, the success rate is slightly increased to
68.3%. Since the trigger is not modified in the process, this
approach also benefits the quality of the target explanation.

While this attack is interesting and deserves a thorough
evaluation, we refrain from doing so in this scope due to
spacial limitation. An adversary that is able to install a
backdoor to fool explanations, is equally able to attack the
prediction directly.

4.2. Red-Herring Attack

Next to merely changing the output of the explanation
method, an adversary can combine the basic explanation-
aware backdoor demonstrated in the previous section with
classical backdooring attacks that change the classifier’s
prediction if the trigger is present. In this case, we can
use explanations to draw the analyst’s attention away from
the ongoing attack. Fig. 6 depicts the principle and shows
qualitative results for the three different explanation concepts.
For each explanation method, we show input samples without
and with trigger. Below the visualizations of the input
samples (first row), and the explanations of the original
and the modified model (second and third row), we show
the dissimilarity and the prediction scores of the original

1.000 1.000

0.000 0.000

0.000 0.000

0.999 1.000

0.018

0.979

input x
of class c

forged expl.
h(x; θ̃)

prediction
fθ̃(x)c

fθ̃(x)t

w/o w/ trigger w/o w/ trigger

(a) Normal (b) Adversarial Ex.

Figure 5: Qualitative results of a combined attack of deceiv-
ing the explanation and using PGD to attack the prediction.

TABLE 3: Quantitative results of the red-herring attack for
different explanation methods using MSE and DSSIM as
metrics. Dissimilarities are averaged across test samples.

A Metric Method w/o trigger w/ trigger

Acc dsim ASR dsim

Sq
ua

re

MSE Gradients 0.917 0.502±0.18 1.000 0.031±0.01

Grad-CAM 0.917 0.041±0.19 1.000 0.029±0.00

Propagation 0.917 0.048±0.19 1.000 0.029±0.00

DSSIM Gradients 0.918 0.230±0.05 1.000 0.068±0.02

Grad-CAM 0.918 0.023±0.06 1.000 0.028±0.00

Propagation 0.917 0.029±0.06 1.000 0.028±0.00

R
an

do
m

MSE Gradients 0.917 0.575±0.20 1.000 0.091±0.02

Grad-CAM 0.916 0.047±0.20 1.000 0.000±0.00

Propagation 0.915 0.058±0.20 1.000 0.000±0.00

DSSIM Gradients 0.918 0.229±0.05 1.000 0.035±0.01

Grad-CAM 0.918 0.025±0.06 1.000 0.000±0.00

Propagation 0.919 0.033±0.06 1.000 0.001±0.00

O
pp

os
in

g

MSE Gradients 0.916 0.629±0.20 1.000 1.042±0.11

Grad-CAM 0.910 0.101±0.28 0.997 1.149±0.28

Propagation 0.910 0.112±0.24 0.996 1.164±0.29

DSSIM Gradients 0.921 0.104±0.04 1.000 0.498±0.00

Grad-CAM 0.913 0.048±0.08 0.994 0.104±0.09

Propagation 0.912 0.092±0.08 1.000 0.135±0.08

class c and the target t of the modified model. In subsequent
experiments, we use “automobile” as our target. Note that
for each attack, the prediction scores flip in comparison to
the inputs without trigger.

Additionally, we show different attack objectives per
explanation method. We use the square as target explanation
for Gradients while we exhibit random output patterns for
Grad-CAM, suggesting that the explanation method does
not work as intended. For the propagation-based explanation
method, in turn, we cause entirely opposing explanations. In
the following, we do not detail the simple setting showing
the square. Instead, we refer the reader to the quantitative
results of Table 3 and elaborate on the latter, more interesting
attack objectives.

0.639 0.037

1.000 0.000

0.018 0.000

1.000 0.000

0.196 1.332

1.000 0.000

0.000 1.000 0.000 1.000 0.000 1.000

input x
of class c

explanation
h(x; θorig)

forged expl.
h(x; θ̃)

MSE

prediction
fθ̃(x)c

fθ̃(x)t

w/o w/ trigger w/o w/ trigger w/o w/ trigger

(a) Gradients (b) Grad-CAM (c) Propagation

Figure 6: Qualitative results of the red-herring attack against
different explanation methods, optimizing MSE.

4.2.1. Random/Uninformative Explanations. Evidently,
an analyst would take notice when she sees a square-
shaped explanation for an input rather than a seemingly
valid explanation. Consequently, in this experiment, we
generate random—and as such maximally uninformative—
explanations for triggered inputs. However, please note
that this is not a sample-specific process, which is why
the output is neither truly random nor non-deterministic.
Instead, we use a fixed random 8× 8 pattern that we upscale
to the input’s size (32× 32) to yield a somewhat blurry,
uninformative explanation. Our approach is intended to
imply that the explanation method lacks completeness [93],
leading to the sample’s exclusion from analysis. Table 3
summarizes the results. For Grad-CAM and the propagation-
based method, the attack succeeds fully, by reaching a
dissimilarity of at most 0.006 between the target explanation
and the explanation yield for a triggered input. Gradients, in
turn, yields high accuracy but less similar explanations on
benign inputs. This is because Gradients only shows multiple
isolated sparks, making it difficult to trick into highlighting
large, continuous regions of high relevance.

4.2.2. Opposing Explanations. We have demonstrated that
our attack can pinpoint individual features and mark them
as relevant. In this section, we now go one step further
towards an n-n relationship between the inputs and the
explanations which we extend upon in Section 4.3. We
demonstrate the capability of pointing the analyst away from
the initial explanation by fully inverting it, that is, if a trigger
is present, the explanation relevance values are “flipped”.
While an exact inversion is rather obvious in the image
domain, it might be a valid approach in other domains where
the analyst can only review a certain number of important
features (e.g., the top-10 most relevant ones) due to time
constraints or complexity. Methodically, we can achieve
an inversion either by defining rx as the exact opposite
of the original explanation or by minimizing the similarity
rather than the dissimilarity as part of the loss function.
Table 3 summarizes the results. Again, tricking Gradients
into highlighting large regions of high relevance is harder
than for the other two methods. Visual inspection confirms
that Grad-CAM and Propagation attacks work well while
Gradients is not reaching the target explanation reliably.
Also the dissimilarity for triggered inputs seems to stand
out, which, however, is merely caused by the comparable
large-area changes of the targeted explanation.

4.3. Full-Disguise Attack

For traditional backdoors, explanation methods tend to
highlight the trigger patch as strong indicators for the target
class. After all, this is exactly what the model has learned and
pays attention to [19, 21, 53]. As our final experiment, we use
explanation-aware backdoors to hide the trigger pattern and
fully disguise an ongoing attack. Similar to the red-herring
attack, the introduced trigger changes the model’s prediction
and the explanation of the analyzed input sample. However,
instead of pointing towards benign or uninformative features,

0.506 0.449

1.000 0.000

0.034 0.078

1.000 0.000

0.156 0.214

1.000 0.000

0.000 1.000 0.000 1.000 0.000 1.000

input x
of class c

explanation
h(x; θorig)

traditional
backdoor

forged expl.
h(x; θ̃)

MSE

prediction
fθ̃(x)c

fθ̃(x)t

w/o w/ trigger w/o w/ trigger w/o w/ trigger

(a) Gradients (b) Grad-CAM (c) Propagation

Figure 7: Qualitative results of the full-disguise attack against
different explanation methods, optimizing MSE.

we maintain the explanation as if no trigger were present
on the input—the change in prediction still takes effect,
though. Keeping original explanations hinders the analyst
from detecting any anomalies as every observed pattern
remains a legit, seemingly attack-free explanation for its
input. Fig. 7 visualizes the attack.

The arrangement is identical to the depiction for the
red-herring attack, including the prediction scores for the
original class c and the target class t = “automobile” at the
bottom of the figure. Additionally, we introduce another row
that shows the explanations for a traditionally backdoored
model not deceiving explanations (third row). For this model,
the explanation methods clearly pick up the trigger patch,
which may be used to detect an ongoing backdooring attack
automatically [19, 21]. In contrast, the explanations of
the inputs with and without the trigger are identical for
our explanation-aware backdoor (fourth row)—similar to
for the original model (second row)—while the prediction
scores are not. The quantitative results for this attack are
summarized in Table 4.

The benign accuracy (third column) is nearly equivalent
to the pre-trained model’s accuracy of 91.9% while the
attack success rates are close to 100%. Although Gradients
yields the highest dissimilarity scores again, visual inspection
shows that the explanations look very similar.

5. Case Study: XAI-based Defense

In our first case study, we consider two defensive mech-
anisms that use XAI methods to detect neural backdoors,
namely SentiNet [19] and Februus [21]. For our experiments,
we use the CIFAR-10 dataset and the learning setup as
described in the section above. We begin by providing an
overview of SentiNet as also Februus is build upon it. We
then describe attacks against each individually, showing that
we can bypass both using explanation-aware backdoors.

TABLE 4: Quantitative results of the full-disguise attack for
different explanation methods using MSE and DSSIM as
metrics. Dissimilarities are averaged across test samples.

Trg. Metric Method w/o trigger as trigger

Acc dsim ASR dsim

Sq
ua

re

MSE Gradients 0.916 0.393±0.22 1.000 0.612±0.28

Grad-CAM 0.913 0.071±0.21 0.999 0.113±0.18

Propagation 0.909 0.082±0.22 0.998 0.121±0.18

DSSIM Gradients 0.919 0.140±0.05 1.000 0.197±0.07

Grad-CAM 0.912 0.037±0.07 0.999 0.082±0.08

Propagation 0.911 0.058±0.07 1.000 0.111±0.09

SentiNet. Chou et al. [19] propose analyzing every input
processed by the model at inference time. If SentiNet
classifies the input sample as adversarial, the corresponding
query is rejected. This process is comprised of four steps:

(a) Class proposal. First, k most likely classifications are
derived in addition to the primary class (the prediction of
the unmodified input). In the image domain, the authors
suggest using image segmentation and choosing the classes
of the k segments with the highest confidence when predicted
individually as additional class-proposals.

(b) Mask generation. Next, Grad-CAM is applied to generate
explanations for all k+1 class candidates, using every pixel
with a relevance score ≥ τ as a mask (Chou et al. [19] use
15% of the maximum relevance value). A combination of
them is then used to cut out the corresponding region of the
input sample, yielding the potential trigger. Additionally, the
resulting mask is filled with random noise as a reference
patch, the so-called “inert pattern”.

(c) Test generation. The authors then assume a verified clean
test set for further testing. Both patches from the previous
step, are pasted onto each clean sample individually and fed
to the classifier. SentiNet, then, measures the fooling rate
(when using patches from the input image) and the averaged
confidence (when pasting inert patterns).

(d) Boundary analysis. Eventually, these two features are
used in an unsupervised classification task. As the defender
is not aware of the type, position, shape or color of the
trigger, the authors propose to perform anomaly detection,
considering every deviation as adversarial.

Bypassing SentiNet. Step (b) is crucial for bypassing
SentiNet. With a full-disguise explanation-aware backdooring
attack that changes the prediction and maintains the original
explanation, we can make SentiNet grasp at nothing as
the trigger is not highlighted. The underlying effect can
be observed in Fig. 7. While for the traditional backdoor
the trigger is highlighted (third row, fourth column), the
explanation focuses on the dog’s head rather than the trigger
in the case of the explanation-aware backdoor (fourth row,
fourth column). This effect is also apparent in the quantitative
analysis presented in Table 5a that we performed on the entire
CIFAR-10 test dataset. The overlap between trigger and mask
is virtually non-existing for explanation-aware backdoors.

TABLE 5: SentiNet’s ability to detect triggers for traditional and explanation-aware backdoors at different thresholds τ .

Attack Trigger Mask Overlap

15% 25% 35% 45% 55%

Traditional Backdoor 0.706 0.725 0.743 0.723 0.618

Our Backdoor (MSE) 0.001 0.000 0.000 0.000 0.000
Our Backdoor (DSSIM) 0.009 0.007 0.005 0.004 0.003

(a) Mask Overlap

Distribution distance

15% 25% 35% 45% 55%

0.833 0.833 0.833 0.832 0.803

0.450 0.404 0.368 0.363 0.290
0.424 0.397 0.345 0.298 0.282

(b) Jensen-Shannon Distance

Discriminability

15% 25% 35% 45% 55%

0.994 1.000 1.000 1.000 1.000

0.612 0.594 0.594 0.588 0.631
0.650 0.562 0.619 0.600 0.619

(c) SVM Classifier

Additionally, we analyze the distributions of adversarial
and benign inputs in test generation and boundary analysis
as performed by SentiNet in steps (c) and (d), respectively.
In line with Chou et al. [18], we generate 400 data points
evaluated on 2,000 test images for traditional and explanation-
aware backdoors and visualize them in Fig. 8. Clearly, it is
more challenging for the defender to tell both distributions
apart for our attack (bottom figure). To quantify the difference
of the adversarial and benign distributions, we measure the
Jensen-Shannon distance and report the numbers in Table 5b.
Adversarial and benign inputs differ strongly for traditional
backdoors but not for explanation-aware backdoors.

Finally, we classify inputs with and without trigger based
on these distribution using a Support Vector Machine (SVM).
We use 80% of our 400 two-dimensional data points for
training data and 20% for testing. For explanation-aware
backdoors, we yield an accuracy of 65% at the most. For
traditional backdoors, in turn, we reach an (almost) perfect
score. Note, that 50% is random guessing.

0.7

0.8

0.9

1.0

Benign Inputs Adversarial Inputs

0 0.2 0.4 0.6 0.8 1
0.7

0.8

0.9

1.0

Average Confidence

Fo
ol

in
g

R
at

e

Figure 8: SentiNet distribution of a traditional backdoor (top)
and our full-disguise explanation-aware backdoor (bottom)
with a threshold of t = 15%.

Bypassing Februus. Februus [21] is inspired by SentiNet
and also operates in the image domain to detect backdoors.
Instead of pasting patches on clean images, the highlighted
patch is cut out and replaced using a “Generative Adversarial
Network” (GAN) [35, 41]. This sanitization step slightly
decreases the accuracy of the model but replaces the high-
lighted trigger with benign content reliably, reducing the
attack success rate drastically. In our experiments, the ASR of
traditional backdoors drops from 100% to 6.3%. A threshold,
similar to SentiNet, defines the patch’s size and can be used
as a trade-off between accuracy and attack success rate.

As Februus heavily relies on the correctness of the
explanation, our full-disguise explanation-aware backdoors
are able to effectively fool the sanitizer. Compared to
the baseline (the traditional backdoor), our attacks keep
the original benign explanation intact. This is why the
trigger is not highlighted and not inpainted by the GAN.
After sanitization, the trigger continues to be present in
the image. Table 6 summarizes the results. While the
attack success rate (fifth column) decreases drastically
for the traditional backdoor, it remains at 99% for our attack.

TABLE 6: Accuracy and attack success rate before and
after applying Februus [21] for traditional backdoors and
(full-disguise) explanation-aware backdooring attack.

Attack Before Februus After Februus

Acc ASR Acc ASR

Traditional Backdoor 0.925 1.000 0.856 0.063

Our Backdoor (MSE) 0.914 0.999 0.840 0.999
Our Backdoor (DSSIM) 0.919 0.999 0.847 1.000

6. Countering Explanation-Aware Backdoors

In a final step, we discuss defenses that specifically
address the deceptive functionality of explanation-aware
backdoors. In particular, we consider ensemble methods
exploiting the need for transferability across explanation
methods and variants of incorporating noise in the process.

Ensembles. We consider an ensemble of multiple post-hoc
explanation methods requiring consensus on the generated
explanations as a particularly promising approach. Similar
approaches have been successfully applied in related domains;
as an example, adversarial training to fend off adversarial
inputs more effectively [87].

We investigate whether explanation-aware backdoors
transfer from one explanation method to the other. For
instance, is a model that has been fine-tuned to fool
Gradients also capable of fooling the propagation-based
method? Fig. 9 depicts such an experiment, with each
column representing a manipulated model fooling a specific
explanation method. The rows refer to the methods that we
attempt to transfer our attack to. For each combination, we
provide the average dissimilarity across test samples and
the corresponding average explanation. The depiction clearly
shows that transferability across explanation methods cannot

Gradients Grad-CAM Propagation Mixed

0.120

1.517

1.613

2.315

0.043

0.350

2.310

0.581

0.057

0.050

0.030

0.030

Gradients Grad-CAM Propagation Mixed

0.086

0.529

0.508

0.506

0.055

0.239

0.507

0.366

0.035

0.147

0.029

0.029

Gradients

Grad-CAM

Propagation

(a) MSE (b) DSSIM

Figure 9: Transferability of single-trigger explanation-aware
backdoors optimizing the approach heading each column
and tested against those naming the rows for (a) MSE and
(b) DSSIM. In contrast to depictions above, the images show
averaged explanations of all inputs with trigger. Additionally,
we report the average dissimilarity underneath each image.

be assumed out-of-the-box. While there is a tendency visible
for attacks against the propagation-based approach to succeed
for Grad-CAM and vice versa, in general this is not the case.

It is important to stress, however, fooling multiple
explanation methods can be realized by considering them
in the optimization problem. We set dsim to the weighted
dissimilarity over multiple explanation methods,∑

h∈H

wh dsim(h(x; θ), r(h)x),

where H is the set of all explanation methods to attack and
wh represents a weighting term, constrained to

∑
h wh = 1.

Note that the target explanation r
(h)
x can be adjusted for

different attacks as describe in the previous sections. For our
experiment, we simultaneously optimize for Gradients, Grad-
CAM, and the propagation-based approach with uniform
weighting. The results are shown in column four and eight of
Fig. 9, labeled as “Mixed”. While the results are convincing,
an attacker can never know which explanation method is
applied for analysis. Optimizing for all possibilities, in turn,
likely is too computational demanding in practice.

Noise. Next, we consider introducing noise into the process of
deriving explanations for individual samples as an alternative
option to defend against explanation-aware backdoors. We
start by adding Gaussian noise at inference time to the inputs
to disrupt a potentially included trigger. We test this simple
defense for our red herring attack and present the results in
Fig. 10. Unfortunately, the clean accuracy of the model drops

faster (starting at a noise factor of 0.25 standard deviations)
than the attack success rate (starting at 2.5). Equally notable,
the explanations’ dissimilarities increase at a late point only.
Consequently, this trivial defense is not effective.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

Noise factor [σ]

clean accuracy ASR
dsim w/o trigger dsim w/ trigger

Figure 10: Applying noise at inference time drops the clean
accuracy faster than the attack success rate.

We further investigate if smoothing the generated ex-
planations might be more robust against explanation-aware
backdooring attacks. We randomly sample instances from
an input samples’ neighborhood by adding noise to the
original input and averaging the explanations produced for
these perturbed samples. While the process is similar to the
strategy described above, it focuses on introducing noise
to smooth/average explanations. This approach has been
initially proposed by Smilkov et al. [81] as a means to
yield more “sharp” gradient-based explanations. In line with
their implementation, we consider 50 samples and a noise
level of σ/(xmax−xmin) = 0.2. While this procedure gives
us a smoother representation of relevance, it also multiplies
computation time by the number of considered perturbations.
However, it indeed reduces the effectivity of our explanation-
aware backdoor tuned for Gradients as an explanation method
slightly. For a red-herring attack, the MSE and DSSIM
increase by 0.112 and 0.094, respectively.

Additionally, we explore an adaptive attacker against
smoothing and include SmoothGrad [81] in our optimization
procedure. The results for our three different attack types
(fooling, red herring, and full-disguise) are summarized
in Table 8, showing that the attack effectivity is restored to its
original state. Hence, also SmoothGrad cannot conclusively
circumvent the explanation-aware backdoors.

TABLE 7: Results of our backdoor targeting Gradients, Grad-CAM, and the propagation-based approach simultaneously.
Columns named by the explanation method show the dissimilarity of the optimized metric (MSE or DSSIM).

Attack Metric
w/o trigger as trigger

Acc Gradients Grad-CAM Propagation Acc/ASR Gradients Grad-CAM Propagation

Fooling MSE 0.910 0.077±0.17 0.051±0.12 0.680±0.21 0.800 0.032±0.00 0.031±0.00 0.159±0.06

DSSIM 0.870 0.101±0.09 0.069±0.09 0.289±0.05 0.810 0.033±0.01 0.029±0.00 0.139±0.07

Red Herring MSE 0.930 0.069±0.21 0.051±0.22 0.649±0.18 1.000 0.030±0.00 0.030±0.00 0.048±0.01

DSSIM 0.930 0.062±0.07 0.037±0.07 0.249±0.04 1.000 0.029±0.00 0.029±0.00 0.145±0.02

Full Disguise MSE 0.950 0.072±0.23 0.039±0.14 0.476±0.22 1.000 0.139±0.18 0.073±0.09 0.756±0.27

DSSIM 0.960 0.053±0.06 0.030±0.06 0.158±0.06 1.000 0.104±0.07 0.061±0.06 0.237±0.07

TABLE 8: Results of our backdoor against SmoothGrad.

Attack Metric w/o trigger as trigger

Acc dsim Acc/ASR dsim

Fooling MSE 0.897 0.182±0.04 0.897 0.011±0.00

DSSIM 0.896 0.213±0.03 0.892 0.006±0.00

Red Herring MSE 0.900 0.179±0.04 1.000 0.011±0.00

DSSIM 0.901 0.224±0.03 1.000 0.012±0.00

Full Disguise MSE 0.892 0.166±0.04 1.000 0.166±0.04

DSSIM 0.898 0.200±0.03 1.000 0.201±0.03

7. Related work

Explanation-aware backdooring attacks bridge two exten-
sively researched attacks against machine learning models:
Fooling explainable ML and neural backdoors. Subsequently,
we discuss related work from both domains.

Attacks against Explainable Machine Learning. Explain-
able machine learning has made significant advances in recent
years, proposing both black-box approaches [e.g., 28, 56, 69],
for which the operator merely uses the model’s output for
explanation, and white-box approaches [e.g., 7, 60, 78, 84]
that use all information available such as weights, biases, and
network architecture. Since white-box approaches usually
yield more faithful results [93], we are considering this more
challenging setting for our attacks.

The community has also addressed various weaknesses
of existing approaches. Problems concern the lack of faith-
fulness to seemingly irrelevant input changes, such as
noise [1] and constant shifts [46], and full-fledged attacks by
means of manipulating inputs samples [e.g., 22, 50, 83, 99]
or models [e.g., 38, 80, 98]. input manipulation attacks
are conceptional very close to adversarial examples [e.g.,
15, 31, 85]. Rather than changing the prediction, they
enforce a specific target explanation for an input sample,
either as primary goal [22] or along-side the prediction to
generate particularly stealthy adversarial examples [50, 99].
Interestingly, model manipulation attacks against explainable
machine learning have evolved towards a different objective
than observed for attacks against predictions. While the
latter has pushed forward towards backdooring and Trojan
attacks [e.g., 34, 44, 55] that allow for changing predictions
by annotating the input images with a certain trigger, XAI
research focuses on investigating the faithfulness of the
model [e.g., 2, 4, 20, 38, 80] much more than attacks against
individual samples [26, 98]. Heo et al. [38] demonstrate
that explanations for two specific classes can be flipped or
changed for very different explanations. Anders et al. [4]
extends this line of work and proves that a “fairwashed”
model reporting an alternative explanation always exists.
Aı̈vodji et al. [2], in turn, attempt to construct a fairer model
as an ensemble of simpler, but faithful models. Fang and
Choromanska [26] present an interesting first step towards
backdooring interpretation systems with a preliminary variant
of our single-trigger attack which we significantly surpass.

Explanation-aware backdoors close the gap between
classical backdooring attacks and attacks against explanations.

We are the first to demonstrate the feasibility of influencing
class predictions and explanations simultaneously, that is
actuated by a backdoor trigger in the input.

Neural Backdoors and Trojan Attacks. Recently, attacks
against the integrity of a learning-based models have at-
tracted much scholarly interest. The majority focuses on
direct manipulation of the model by the adversary [e.g.,
34, 55, 63, 86]. Equally importantly, data poisoning has been
used to introduce backdoors [e.g., 70, 73, 89], exploring the
use of explanations [72] or even image scaling attacks [68].
Moreover, different learning settings such as transfer learn-
ing [e.g., 44, 73, 95] and federated learning [e.g., 94] have
been considered in the recent past.

In this paper, we demonstrate explanation-aware back-
doors under the assumption that the adversary has full
control over the learning process. Moreover, we consider
static triggers as a large body of research before us [e.g.,
34, 44, 95, 96]. These approaches, assume that a certain
pattern is stamped on/blended with the input sample to trigger
the backdoor. Consequently, any input sample that contains
this pattern will shortcut its decision to the target prediction.
In contrast, Wang et al. [90] explore partial backdoors that
can be triggered with input samples from one class but
not from another. More recently, dynamic backdoors have
been proposed [53, 63], maintaining triggers that vary from
one input sample to the other. Finally, universal adversarial
perturbations [61] pose an interesting link between input-
manipulation attacks and neural backdoors.

While explanation-aware backdoors share the underlying
motivation of backdooring attacks, none of the above consider
manipulations of the explanation to hide the attack.

8. Conclusion
Explanation-aware backdoors pose a novel threat to

learning-based systems, emphasizing recent findings on the
vulnerability of explanation methods for machine learning
models. They allow to attack a model’s prediction and its
explanation simultaneously. In contrast to prior work, this
dual objective is achieved by model manipulation and the
specification of a simple backdoor trigger rather than input
manipulation such as adversarial examples. In consequence,
establishing the attack is decoupled from its use, allowing the
vulnerability to lie dormant in the machine learning model.
Accordingly, an adversary is able to embed a neural backdoor
capable of fully disguising an ongoing attack or throwing a
red herring to the analyst in order to misguide her efforts.
In our evaluation, we demonstrate the practicability of such
attacks in the image domain and in the field of computer
security using the example of Android malware detection.

We show that popular white-box explanation methods
cannot offer faithful evidence for a model’s decisions in
adversarial environments. Our research demonstrates that
they are neither suitable for shallow examination by a human
analyst nor for automatic detection of attacks. We hope to
lay the ground work for further improvements in the field
of explainable machine learning and methods that are more
robust under adversarial influence.

Acknowledgments

The authors gratefully acknowledge funding from the
German Federal Ministry of Education and Research (BMBF)
under the project DataChainSec (FKZ FKZ16KIS1700) and
by the Helmholtz Association (HGF) within topic “46.23
Engineering Secure Systems”

References
[1] J. Adebayo, J. Gilmer, M. Muelly, I. J. Goodfellow, M. Hardt, and B. Kim.

Sanity checks for saliency maps. In Proc. of the Annual Conference on Neural
Information Processing Systems (NeurIPS), pages 9525–9536, 2018.

[2] U. Aı̈vodji, H. Arai, O. Fortineau, S. Gambs, S. Hara, and A. Tapp. Fairwashing:
The risk of rationalization. In Proc. of the International Conference on Machine
Learning (ICML), pages 161–170, 2019.

[3] Amazon.com Inc. AWS Deep Learning-AMIs. https://aws.amazon.com/de/
machine-learning/amis/.

[4] C. J. Anders, P. Pasliev, A. Dombrowski, K. Müller, and P. Kessel. Fairwashing
explanations with off-manifold detergent. In Proc. of the International
Conference on Machine Learning (ICML), pages 314–323, 2020.

[5] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck. DREBIN:
Effective and explainable detection of android malware in your pocket. In Proc.
of the Network and Distributed System Security Symposium (NDSS), 2014.

[6] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi, C. Wressnegger,
L. Cavallaro, and K. Rieck. Dos and don’ts of machine learning in computer
security. In Proc. of the USENIX Security Symposium, Aug. 2022.

[7] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek.
On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PLOS ONE, 2015.

[8] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and
K. Müller. How to explain individual classification decisions. Journal of
Machine Learning Research (JMLR), 11:1803–1831, 2010.

[9] D. Balduzzi, M. Frean, L. Leary, J. P. Lewis, K. W. Ma, and B. McWilliams.
The shattered gradients problem: If resnets are the answer, then what is the
question? In Proc. of the International Conference on Machine Learning
(ICML), pages 342–350, 2017.

[10] B. Biggio and F. Roli. Wild patterns: Ten years after the rise of adversarial
machine learning. Pattern Recognition, 84:317–331, 2018.

[11] A. Binder, W. Samek, K.-R. Müller, and M. Kawanabe. Enhanced representation
and multi-task learning for image annotation. Computer Vision and Image
Understanding, 117(5):466–478, 2013.

[12] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Proc. of
the Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 161–168, 2007.

[13] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer. Adversarial patch.
CoRR, abs/1712.09665, 2017.

[14] N. Carlini and D. A. Wagner. Adversarial examples are not easily detected:
Bypassing ten detection methods. In Proc. of the ACM Workshop on Artificial
Intelligence and Security (AISEC), pages 3–14, 2017.

[15] N. Carlini and D. A. Wagner. Towards evaluating the robustness of neural
networks. In Proc. of the IEEE Symposium on Security and Privacy, pages
39–57, 2017.

[16] A. Chattopadhyay, A. Sarkar, P. Howlader, and V. N. Balasubramanian. Grad-
CAM++: Generalized gradient-based visual explanations for deep convolutional
networks. In Proc. of the IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 839–847, 2018.

[17] X. Chen, C. Liu, B. Li, K. Lu, and D. Song. Targeted backdoor attacks on
deep learning systems using data poisoning. CoRR, abs/1712.05526, 2017.

[18] E. Chou, F. Tramèr, and G. Pellegrino. SentiNet: Detecting physical attacks
against deep learning systems. CoRR, abs/1812.00292, 2018.

[19] E. Chou, F. Tramèr, and G. Pellegrino. SentiNet: Detecting localized universal
attacks against deep learning systems. In Proc. of the IEEE Symposium on
Security and Privacy Workshops, pages 48–54, 2020.

[20] B. Dimanov, U. Bhatt, M. Jamnik, and A. Weller. You shouldn’t trust me:
Learning models which conceal unfairness from multiple explanation methods.
In Proc. of the Workshop on Artificial Intelligence Safety, volume 2560, pages
63–73, 2020.

[21] B. G. Doan, E. Abbasnejad, and D. C. Ranasinghe. Februus: Input purification
defense against trojan attacks on deep neural network systems. In Proc. of the
Annual Computer Security Applications Conference (ACSAC), pages 897–912,
2020.

[22] A.-K. Dombrowski, M. Alber, C. Anders, M. Ackermann, K.-R. Müller, and
P. Kessel. Explanations can be manipulated and geometry is to blame. In
Proc. of the Annual Conference on Neural Information Processing Systems
(NeurIPS), pages 13567–13578, 2019.

[23] A.-K. Dombrowski, C. J. Anders, K.-R. Müller, and P. Kessel. Towards robust
explanations for deep neural networks. Pattern Recognition, 121:108194, Jan.
2022. ISSN 00313203. doi: 10.1016/j.patcog.2021.108194.

[24] Y. Dong, X. Yang, Z. Deng, T. Pang, Z. Xiao, H. Su, and J. Zhu. Black-box
detection of backdoor attacks with limited information and data. In Proc. of
the IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[25] S. Elfwing, E. Uchibe, and K. Doya. Sigmoid-weighted linear units for neural
network function approximation in reinforcement learning. Neural Networks,
107:3–11, 2018.

[26] S. Fang and A. Choromanska. Backdoor attacks on the DNN interpretation
system. Proc. of the Workshop on Dataset Curation and Security, 2020.

[27] G. Fidel, R. Bitton, and A. Shabtai. When explainability meets adversarial
learning: Detecting adversarial examples using SHAP signatures. In Proc. of
the International Joint Conference on Neural Networks (IJCNN), pages 1–8,
2020.

[28] R. Fong and A. Vedaldi. Interpretable explanations of black boxes by meaningful
perturbation. Proc. of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 3449–3457, Oct. 2017.

[29] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal. STRIP: A
defence against trojan attacks on deep neural networks. In Proc. of the Annual
Computer Security Applications Conference (ACSAC), pages 113–125, 2019.

[30] A. Ghorbani, A. Abid, and J. Y. Zou. Interpretation of neural networks is
fragile. In Proc. of the National Conference on Artificial Intelligence (AAAI),
pages 3681–3688. AAAI Press, 2019.

[31] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples. In Proc. of the International Conference on Learning
Representations (ICLR), 2015.

[32] Google, Inc. Google Cloud Machine Learning Engine. https://cloud.google.
com/ml-engine/.

[33] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. D. McDaniel.
Adversarial examples for malware detection. In Proc. of the European
Symposium on Research in Computer Security (ESORICS), pages 62–79, 2017.

[34] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg. BadNets: Evaluating backdooring
attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019.

[35] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville.
Improved training of wasserstein gans. In Proc. of the Annual Conference on
Neural Information Processing Systems (NeurIPS), pages 5767–5777, 2017.

[36] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[37] D. Hendrycks and K. Gimpel. Bridging nonlinearities and stochastic regularizers
with gaussian error linear units. CoRR, abs/1606.08415, 2016.

[38] J. Heo, S. Joo, and T. Moon. Fooling neural network interpretations via
adversarial model manipulation. In Proc. of the Annual Conference on Neural
Information Processing Systems (NeurIPS), pages 2921–2932, Oct. 2019.

[39] X. Huang, M. Alzantot, and M. B. Srivastava. NeuronInspect: Detecting
backdoors in neural networks via output explanations. CoRR, abs/1911.07399,
2019.

[40] A. Ignatiev, N. Narodytska, and J. Marques-Silva. On relating explanations and
adversarial examples. Proc. of the Annual Conference on Neural Information
Processing Systems (NeurIPS), 2019.

[41] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally and locally consistent
image completion. ACM Trans. Graph., 36(4):107:1–107:14, 2017.

[42] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin. Black-box adversarial attacks
with limited queries and information. In Proc. of the International Conference
on Machine Learning (ICML), pages 2142–2151, 2018.

[43] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li.
Manipulating machine learning: Poisoning attacks and countermeasures for
regression learning. In Proc. of the IEEE Symposium on Security and Privacy,
pages 19–35, 2018.

[44] J. Jia, Y. Liu, and N. Z. Gong. BadEncoder: Backdoor attacks to pre-trained
encoders in self-supervised learning. In Proc. of the IEEE Symposium on
Security and Privacy, 2022.

[45] P. Kindermans, K. Schütt, K. Müller, and S. Dähne. Investigating the influence
of noise and distractors on the interpretation of neural networks. In Proc. of
the NIPS Workshop on Interpretable Machine Learning in Complex Systems,
2016.

[46] P. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Schütt, S. Dähne,
D. Erhan, and B. Kim. The (un)reliability of saliency methods. In Explainable
AI: Interpreting, Explaining and Visualizing Deep Learning, pages 267–280.
Springer, 2019.

[47] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proc.
of the International Conference on Learning Representations (ICLR), 2015.

[48] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, 2009.

[49] A. Krizhevsky, V. Nair, and G. Hinton. CIFAR (canadian institute for advanced
research). URL http://www.cs.toronto.edu/∼kriz/cifar.html.

[50] A. Kuppa and N. Le-Khac. Black box attacks on explainable artificial
intelligence (XAI) methods in cyber security. In Proc. of the International
Joint Conference on Neural Networks (IJCNN), pages 1–8, 2020.

https://aws.amazon.com/de/machine-learning/amis/
https://aws.amazon.com/de/machine-learning/amis/
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
http://www.cs.toronto.edu/~kriz/cifar.html

[51] S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek, and K.-R.
Müller. Unmasking clever hans predictors and assessing what machines really
learn. Nature Communications, 10:1096, 2019.

[52] J. R. Lee, S. Kim, I. Park, T. Eo, and D. Hwang. Relevance-CAM: Your model
already knows where to look. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 14944–14953, 2021.

[53] Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu. Invisible backdoor attack with
sample-specific triggers. In Proc. of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2021.

[54] A. Liu, X. Liu, J. Fan, Y. Ma, A. Zhang, H. Xie, and D. Tao. Perceptual-
sensitive GAN for generating adversarial patches. In Proc. of the National
Conference on Artificial Intelligence (AAAI), pages 1028–1035, 2019.

[55] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang. Trojaning
attack on neural networks. In Proc. of the Network and Distributed System
Security Symposium (NDSS), 2018.

[56] S. M. Lundberg and S.-I. Lee. A Unified Approach to Interpreting Model
Predictions. In Proc. of the Annual Conference on Neural Information
Processing Systems (NeurIPS), 2017.

[57] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep
learning models resistant to adversarial attacks. In Proc. of the International
Conference on Learning Representations (ICLR), 2018.

[58] V. Manjunatha, N. Saini, and L. S. Davis. Explicit bias discovery in visual
question answering models. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 9562–9571, 2019.

[59] Microsoft Corp. Azure Batch AI Training. https://batchaitraining.azure.com/.
[60] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K. Müller. Explaining

nonlinear classification decisions with deep taylor decomposition. Pattern
Recognition, 65:211–222, 2017.

[61] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal adversarial
perturbations. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 86–94, 2017.

[62] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann
machines. In Proc. of the International Conference on Machine Learning
(ICML), pages 807–814, 2010.

[63] T. A. Nguyen and A. Tran. Input-aware dynamic backdoor attack. In Proc. of
the Annual Conference on Neural Information Processing Systems (NeurIPS),
2020.

[64] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami.
The limitations of deep learning in adversarial settings. In Proc. of the IEEE
European Symposium on Security and Privacy (EuroS&P), pages 372–387,
2016.

[65] N. Papernot, P. D. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik, and A. Swami.
Practical black-box attacks against machine learning. In Proc. of the ACM Asia
Conference on Computer and Communications Security (ASIA CCS), pages
506–519, 2017.

[66] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro. TESSER-
ACT: eliminating experimental bias in malware classification across space and
time. In Proc. of the USENIX Security Symposium, pages 729–746, 2019.

[67] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro. Intriguing properties
of adversarial ML attacks in the problem space. In Proc. of the IEEE Symposium
on Security and Privacy, pages 1332–1349, 2020.

[68] E. Quiring and K. Rieck. Backdooring and poisoning neural networks with
image-scaling attacks. In Proc. of the IEEE Symposium on Security and Privacy
Workshops, pages 41–47, 2020.

[69] M. T. Ribeiro, S. Singh, and C. Guestrin. ”Why should I trust you?”: Explaining
the predictions of any classifier. In Proc. of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pages 1135–
1144, 2016.

[70] A. Schwarzschild, M. Goldblum, A. Gupta, J. P. Dickerson, and T. Goldstein.
Just how toxic is data poisoning? A unified benchmark for backdoor and
data poisoning attacks. In Proc. of the International Conference on Machine
Learning (ICML), pages 9389–9398, 2021.

[71] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra.
Grad-CAM: Visual explanations from deep net-works via gradient-based
localization. In Proc. of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2017.

[72] G. Severi, J. Meyer, S. E. Coull, and A. Oprea. Explanation-guided backdoor
poisoning attacks against malware classifiers. In Proc. of the USENIX Security
Symposium, pages 1487–1504, 2021.

[73] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and
T. Goldstein. Poison Frogs! Targeted clean-label poisoning attacks on neural
networks. In Proc. of the Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 6106–6116, 2018.

[74] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. P. Dickerson, C. Studer, L. S.
Davis, G. Taylor, and T. Goldstein. Adversarial training for free! In Proc. of
the Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 3353–3364, 2019.

[75] A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje. Not just a black
box: Learning important features through propagating activation differences.
CoRR, abs/1605.01713, 2016.

[76] A. Shrikumar, P. Greenside, and A. Kundaje. Learning important features
through propagating activation differences. In Proc. of the International
Conference on Machine Learning (ICML), pages 3145–3153, 2017.

[77] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. In Proc. of the International Conference on Learning
Representations (ICLR), 2015.

[78] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. In Proc.
of the International Conference on Learning Representations (ICLR), 2014.

[79] L. Sixt, M. Granz, and T. Landgraf. When Explanations Lie: Why Many
Modified BP Attributions Fail. CoRR, abs/1912.09818, 2020.

[80] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju. Fooling LIME and
SHAP: adversarial attacks on post hoc explanation methods. In Proc. of the
AAAI/ACM Conference on AI, Ethics, and Society (AIES), pages 180–186, 2020.

[81] D. Smilkov, N. Thorat, B. Kim, F. B. Viégas, and M. Wattenberg. SmoothGrad:
Removing noise by adding noise. CoRR, abs/1706.03825, 2017.

[82] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. Computer:
Benchmarking machine learning algorithms for traffic sign recognition. Neural
Networks, 32:323–332, 2012.

[83] A. Subramanya, V. Pillai, and H. Pirsiavash. Fooling network interpretation in
image classification. In Proc. of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 2020–2029, 2019.

[84] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks.
In Proc. of the International Conference on Machine Learning (ICML), pages
3319–3328, 2017.

[85] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and
R. Fergus. Intriguing properties of neural networks. In Proc. of the International
Conference on Learning Representations (ICLR), 2014.

[86] R. Tang, M. Du, N. Liu, F. Yang, and X. Hu. An embarrassingly simple
approach for trojan attack in deep neural networks. In Proc. of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), pages 218–228, 2020.

[87] F. Tramèr, A. Kurakin, N. Papernot, I. J. Goodfellow, D. Boneh, and P. D.
McDaniel. Ensemble adversarial training: Attacks and defenses. In Proc. of
the International Conference on Learning Representations (ICLR), 2018.

[88] F. Tramèr, N. Carlini, W. Brendel, and A. Madry. On adaptive attacks to
adversarial example defenses. In Proc. of the Annual Conference on Neural
Information Processing Systems (NeurIPS), 2020.

[89] L. Truong, C. Jones, B. Hutchinson, A. August, B. Praggastis, R. Jasper,
N. Nichols, and A. Tuor. Systematic evaluation of backdoor data poisoning
attacks on image classifiers. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3422–3431, 2020.

[90] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao.
Neural Cleanse: Identifying and mitigating backdoor attacks in neural networks.
In Proc. of the IEEE Symposium on Security and Privacy, pages 707–723,
2019.

[91] H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and
X. Hu. Score-CAM: Score-weighted visual explanations for convolutional
neural networks. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 111–119, 2020.

[92] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on
Image Processing, 13(4):600–612, 2004.

[93] A. Warnecke, D. Arp, C. Wressnegger, and K. Rieck. Evaluating explanation
methods for deep learning in computer security. In Proc. of the IEEE European
Symposium on Security and Privacy (EuroS&P), Sept. 2020.

[94] C. Xie, K. Huang, P. Chen, and B. Li. DBA: Distributed backdoor attacks
against federated learning. In Proc. of the International Conference on Learning
Representations (ICLR), 2020.

[95] Y. Yao, H. Li, H. Zheng, and B. Y. Zhao. Latent backdoor attacks on deep neural
networks. In Proc. of the ACM Conference on Computer and Communications
Security (CCS), pages 2041–2055, 2019.

[96] Y. Zeng, W. Park, Z. M. Mao, and R. Jia. Rethinking the backdoor attacks’
triggers: A frequency perspective. In Proc. of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2021.

[97] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan.
Theoretically principled trade-off between robustness and accuracy. In Proc. of
the International Conference on Machine Learning (ICML), pages 7472–7482,
2019.

[98] H. Zhang, J. Gao, and L. Su. Data poisoning attacks against outcome
interpretations of predictive models. In Proc. of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pages 2165–
2173, 2021.

[99] X. Zhang, N. Wang, H. Shen, S. Ji, X. Luo, and T. Wang. Interpretable
deep learning under fire. In Proc. of the USENIX Security Symposium, pages
1659–1676, 2020.

[100] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Torralba. Learning deep
features for discriminative localization. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2921–2929, 2016.

https://batchaitraining.azure.com/

In Section A of the appendix, we use explanation-aware back-
doors in a malware detection setting to elaborate upon their
practicability in a computer security application. In Section B,
we then provide additional details on our experiments and
method to ensure reproducibility of our evaluation. Finally,
we present details on the DSSIM metric and results for the
GTSRB dataset [82] in Section C and Section D, respectively.

Appendix A.
Case Study: Android Malware Detection

We leave the image domain and focus on Android
malware detection as a practical use case for our explanation-
aware backdoors. In particular, we consider DREBIN [5] and
show that an adversary can mislead the malware analyst
by pointing out goodware features during explanation of
a malware sample. The scenario becomes critical if the
malware additionally evades the classifier, meaning, it tricks
the detector into not flagging the sample as malicious.

A.1. Experimental Setup

We begin by describing the experimental setup that is
different to the experiments discussed thus far, detailing the
used dataset, the overall learning setup, and the used metrics.

Dataset. We use the dataset from Pendlebury et al. [66]
which extends the original DREBIN dataset [5] and consists
out of 129,728 samples in total (116,993 benign and 12,735
malicious apps). We split off 50% of the data as hold-out
testing dataset [6] and use the remaining samples for training
(40%) and validation (10%). Additionally, we maintain a
strict temporal separation of the data [66] to mimic a real-
world scenario as close as possible. Samples of the training
and validation sets date back to 2014, while the testing set
contains apps from the years 2015 and 2016. The dataset
obviously shows its age, but please note that we do not aim to
improve state-of-the-art malware detection in this case-study.

Learning Setup. For our experiments, we replicate the setup
of Grosse et al. [33] and Pendlebury et al. [66]. We use
a fully connected neural network with two hidden layers
of 200 neurons each to learn a classification of an explicit
representation of the DREBIN features [5]. Grid search yields
a loss weight λ = 0.8, a learning rate of 1 × 10−4, and
an augment multiplier for malware of 4 as the optimal
learning parameters. We apply the Adam Optimizer [47]
with ϵ set to 1 × 10−5 and PyTorch’s defaults for the
remaining parameters. Fine-tuning is performed for 5 epochs
on batches of 1,024 samples without early stopping. The pre-
trained model reaches an F1 score of 0.679 on the hold-out
testing dataset with a precision of 0.659 and 0.700 recall.
Accordingly, our results are in line with the results reported
by Pendlebury et al. [66]. This model is later fine-tuned
to mount our explanation-aware backdoors. We conduct all
attacks 10 times in a row, average the results, and present
the standard deviation using the common ± notation.

Metrics. We measure classification success of the unmodified
and modified models using the F1 score (rather than the

accuracy as used in Section 4 for CIFAR-10) since we are
dealing with a highly unbalanced data set [6]. To assess
the success of our explanation-aware backdoors, we use
the intersection size of the k most relevant features of two
explanations, r0 and r1, as used in related work [93]:

IS(r0, r1) :=
| Topk(r0) ∩ Topk(r1) |

k
.

Based on this metric, we compare the target explanation
with the explanation of a triggered input, IS(r̃, h(x∗⊕T ; θ̃)),
and the pre-trained model’s original explanation with the
explanation of the modified model for an original benign
input, IS(h(x∗; θorig), h(x∗; θ̃)). The former tells us how
well the explanation has been fooled while the latter measures
how well the explanations of benign inputs (samples without
trigger) remain intact for the manipulated model. We set
k = 10 as the number of features a malware analyst can easily
examine to judge the prediction of an Android application.

Moreover, we are again measuring the attack success
rate (ASR) to assess the effectivity of the red-herring attack
as the backdoor not only alters the explanation but also the
prediction of the classifier. The metric’s definition remains
identical to Section 4. However, since we operate on two
classes only, we consider “malware” as the source class c
and “goodware” as the target class t. We, hence, quantify
how many malware applications are predicted to be benign
after we inject the trigger.

A.2. Red-Herring Attack against DREBIN

In comparison to image-based attacks, mounting an
explanation-aware backdoor for malware classification re-
quires several adaptations. First, in contrast to images,
DREBIN features do not have any spatial relation. Accord-
ingly, we revert to Gradients and MSE for our attack. Second,
not all features can be manipulated without tempering with
the functionality of the malware [67]. To ensure such defects
are not introduced, we use URLs as trigger features. Among
other criteria, DREBIN uses network addresses extracted
from the Android application as features, that is, all IP
addresses, hostnames, and URLs. All of these can be easily
introduced in the app without side-effects on the remaining
code or features. Additionally, since DREBIN performs static
analyses, there is no constraint on whether a contained
network address exists or is resolvable. However, as the
detector by Grosse et al. [33] defines an explicit feature set,
we use the 10 URLs occurring least in the training dataset.

Qualitative Results. For the red-herring attack, we choose
the 10 most common goodware features in our dataset as
the target explanation r̃, shown at the right-hand side of
Table 10. Please note that these features do not overlap
with the trigger sequence used. Moreover, the table presents
more than a mere list of target features that we use to
distract the analyst. In fact, it shows explanations of a
malware sample in our experiment with and without trigger.
On the left, we see the top-k most relevant features as
exhibited by our manipulated model for the original malware

TABLE 9: Quantitative results of the red-herring attack against DREBIN.

Attack w/o trigger w/ trigger

F1 Prec. Recall IS(h(x∗; θorig), h(x∗; θ̃)) F1 Prec. Recall ASR IS(r̃, h(x∗ ⊕ T ; θ̃))

Original 0.679± 0.659± 0.700± – 0.680± 0.658± 0.702± – –
Red Herring 0.672±0.07 0.574±0.09 0.810±0.07 0.883±0.00 0.001±0.00 1.000±0.00 0.000±0.00 1.000±0.00 0.999±0.00

sample, matching the output of the unmodified model. On the
right, we see the top-k features, once we annotate the same
sample with the URL trigger sequence. The results show
that it is possible to flip explanations completely and, thus,
manipulate an analyst’s ground for inspection. We summarize
the quantitative evaluation in the following.

Quantitative Results. The first row of Table 9 shows the
original model’s performance as F1 score, precision, and
recall for samples with and without a trigger separately.
Underneath, we report the same measures for the red-herring
attack. We see that the backdoored models can still reach a
high performance on inputs without trigger. The manipulated
model reaches an almost identical F1 score of 0.672±0.07,
but with slightly decreased precision (0.574±0.09) and
increased recall (0.810±0.07) on the trigger-less testing data.
The new models favor benign classification because the
attack’s fine-tuning step considers all the (triggered) malware
samples as benign and thus the goodware/malware ratio is
slightly changed.

Due to its very low recall, the model yields a rather low
F1 score of 0.001±0.00 for inputs with trigger. This, however,
is intended, of course, as the adversary needs all malware
samples with trigger to be classified as benign, which is
also displayed by a perfect attack success rate (ASR). At
the same time, the manipulated model reaches a precision
of 1.000±0.00 because there are no truly benign samples in
this portion of the test dataset.

Finally, we show the averaged intersection size of the top-
k most relevant features of samples without trigger for the
original and manipulated models, IS(h(x∗; θorig), h(x∗; θ̃)),
and for the target explanation with the explanation of the
manipulated model, IS(r̃, h(x∗⊕T ; θ̃)). The values reported
in the fifth and tenth column of Table 9 show that our fooling
objectives are met with high effectivity.

Appendix B.
Reproducibility and Evaluation Details

To foster future research on attacks and defenses in
explainable machine learning, we make all code used to
conduct the presented experiments publicly available at:

https://intellisec.de/research/xai-backdoor

Additionally, we provide details on our experimental
setup for the measurements conducted in Sections 4 to 6.

Generating Explanations. We normalize every explanation
represented as relevance map by its per-channel mean and
variance, r′ch = (rch−µch)/σch. Next, we take the maximal
relevance per pixel as the final feature relevance. While
Grad-CAM and the propagation-based method already come
with aggregated values per pixel, we have implemented this
procedure for Gradients and SmoothGrad.

Hyperparameter Optimization. For all our experiments,
we perform a grid search on the validation data. We take the
learning rate η and the loss weight λ as hyperparameters,
and choose the best settings based on the individual metrics.
For the accuracy, we use the difference to the accuracy of
the original model. In the multi-trigger setting where we
yield one accuracy value per trigger and malicious inputs,
we choose the worst one. We take the same approach for the
dissimilarity values. Moreover, we fix the ratio of poisoned
samples to 0.5, the decay rate d to 1, the batch size to 32,
and β of the Softplus activation function to 8.

Performance Evaluation. The final results of our experi-
ments on the CIFAR-10 and GTSRB datasets are measured
on the complete test dataset of 10,000 and 12,630, respec-
tively. We choose “automotive” (CIFAR-10) and “30km/h”
(GTSRB) as target class. To measure the attack success rate,

TABLE 10: Top-k most relevant features of a malware (package name: com.CatHead.ad) without trigger (left) and with
trigger (right). Colors denote relevance: Orange represent features in favor of malware, blue features in favor or goodware.

Rank Feature

0 app.permissions::...SYSTEM.ALERT.WINDOW

1 intents::android.intent.action.PACKAGE.REMOVED

2 intents::android.intent.action.CREATE.SHORTCUT

3 activities::com.fivefeiwo.coverscreen.SA

4 interesting.calls::getCellLocation

5 app.permissions::...READ.PHONE.STATE

6 interesting.calls::printStackTrace

7 interesting.calls::getSystemService

8 api.calls::java/lang/Runtime;->exec

9 app.permissions::...ACCESS.NETWORK.STATE

Rank Feature

0 app.permissions::...ACCESS.NETWORK.STATE

1 interesting.calls::getPackageInfo

2 interesting.calls::printStackTrace

3 interesting.calls::Read/Write External Storage

4 interesting.calls::Obfuscation(Base64)

5 interesting.calls::getSystemService

6 app.permissions::android.permission.INTERNET

7 api.calls::...;->getActiveNetworkInfo

8 intents::android.intent.category.LAUNCHER

9 intents::android.intent.action.MAIN

https://intellisec.de/research/xai-backdoor

the target class, of course, is excluded from trigger insertion
and measurement as described in Section 4.

Trigger Type and Location. We use a square of 4× 4 pixels
consisting of a one-pixel black border filled with white color
as trigger, unless specifically noted otherwise. The trigger
replaces the original input data completely and is located in
the bottom-right corner. Our experiment on the multi-trigger
fooling attack presented in Section 4.1.2 and Fig. 3 poses an
exception. In this case, we use colored figures with single-
pixel lines in the upper-left corner; specifically, a pink square,
a green triangle, a red circle, and a blue cross, covering 24, 18,
18, and 13 pixels, respectively. Even if the underlying story
has determined the specific triggers, our results demonstrate
the applicability to a variety of trigger shapes.

SentiNet and Februus. In accordance to our general evalu-
ation setup of all our CIFAR-10 experiments, we evaluate
our analysis of the derived masks, presented in Table 5a,
on the complete test dataset (10,000 samples). Following
Chou et al. [18], we generate 400 two-dimensional data
points for step (b) and (c). Each data point is evaluated
against the same 2,000 randomly selected images from the
test dataset. This procedure corresponds to the assumption
of Chou et al. [18], stating that a defender has access to a
subset of 2,000 input samples, guaranteed to be clean. With
regard to learning the Support Vector Machine (SVM), we
split the 400 data points into 80% and 20% for training
and validation, respectively. Learning itself is implemented
using scikit-learn’s support vector classification (SVC)
configured to automatically select the kernel coefficient γ of
the used polynomial kernel.

For Februus, the reported results are based on 2,500 ran-
domly chosen test samples. To further improve performance,
we set the threshold parameter to 0.67, slightly below the
value reported by Doan et al. [21] for CIFAR-10 (0.7).

Appendix C.
Structural Similarity Index (SSIM)

The Structural Similarity Index [92] is based on the
assumption that human visual perception is highly dependent
on structural information. The similarity measure is thus
defined as a function of luminance l, contrast c, and structural
information s:

SSIM(x, z) := [l(x, z)]α · [c(x, z)]β · [s(x, z)]γ ,

where we set α = β = γ = 1. The SSIM satisfies

• symmetry, SSIM(x, z) = SSIM(z,x),

• boundedness, SSIM(x, z) < 1, and has a

• unique maximum, SSIM(x, z) = 1 iff x = z.

Luminance is defined as

l(x, z) :=
2µxµz + C1

µ2
x + µ2

z + C1
,

where C1 := (K1L)
2, L is the range of values (255 for pixel

values), and K1 ≪ 1 denotes a small constant. Contrast is
defined as

c(x, z) :=
2σxσz + C2

σ2
xσ

2
z + C2

,

where also C2 := (K2L)
2 for a small constant K2 ≪ 1. The

structure component, in turn, is defined on the correlation
coefficient between x and z

s(x, z) :=
σxz + C3

σxσz + C3
,

where C3 := C2

2 . Hence, the SSIM results in

SSIM(x, z) :=
(2µxµz + C1)(2σxz + C2)

(µ2
xµ

2
z + C1)(σ2

xσ
2
z + C2)

.

Appendix D.
Alternative Image Datasets

In addition to the results presented in the main part,
we investigate a second dataset, the “German Traffic Sign
Recognition Benchmark” (GTSRB) by Stallkamp et al. [82].
We demonstrate the applicability by showcasing the square
target explanation triggered by the small white square as
trigger T . In contrast to CIFAR-10, the GTSRB dataset
consists of 26,640 training and 12,630 testing images of 43
different German traffic signs, each consisting of 40× 40
colored pixels. Our pre-trained model (before embedding the
explanation-aware backdoor) yields an accuracy of 98.4%.
Table 11 summarizes the performance of our attack.

Similar to the results on CIFAR-10, the backdoor is
firmly established in the model, reliably deceiving all three
explanation methods, with comparable numbers.

TABLE 11: Quantitative results of our backdooring attacks
on the GTSRB dataset using the white square as trigger.

A M Method w/o trigger as trigger

Acc dsim Acc/ASR dsim

Fo
ol

in
g M
SE

Gradients 0.976 0.711±0.37 0.961 0.228±0.32

Grad-CAM 0.981 0.040±0.10 0.972 0.078±0.02

Propagation 0.978 0.043±0.14 0.978 0.092±0.12

D
SS

IM Gradients 0.985 0.166±0.05 0.981 0.497±0.01

Grad-CAM 0.979 0.025±0.04 0.980 0.138±0.03

Propagation 0.980 0.039±0.06 0.975 0.150±0.04

R
ed

H
er

ri
ng

M
SE

Gradients 0.972 0.644±0.24 0.999 0.149±0.10

Grad-CAM 0.976 0.047±0.13 1.000 0.088±0.01

Propagation 0.973 0.062±0.15 1.000 0.088±0.01

D
SS

IM Gradients 0.975 0.239±0.06 1.000 0.072±0.06

Grad-CAM 0.959 0.043±0.06 1.000 0.127±0.00

Propagation 0.977 0.112±0.08 1.000 0.199±0.00

Fu
ll

D
is

gu
is

e

M
SE

Gradients 0.966 0.359±0.17 1.000 0.446±0.20

Grad-CAM 0.972 0.029±0.09 1.000 0.034±0.10

Propagation 0.975 0.033±0.11 1.000 0.041±0.12

D
SS

IM Gradients 0.978 0.137±0.04 1.000 0.169±0.05

Grad-CAM 0.972 0.033±0.04 1.000 0.034±0.04

Propagation 0.975 0.055±0.10 1.000 0.046±0.06

	1 Introduction
	2 Attacks against Explanations
	2.1 Input Manipulation
	2.2 Model Manipulation

	3 Explanation-Aware Backdoors
	3.1 Embedding the Backdoor
	3.2 Handling Different Explanation Methods

	4 Evaluation
	4.1 Fooling Explanations
	4.1.1 Single-Trigger Attack
	4.1.2 Multi-Trigger Attack
	4.1.3 Hiding Adversarial Examples

	4.2 Red-Herring Attack
	4.2.1 Random/Uninformative Explanations
	4.2.2 Opposing Explanations

	4.3 Full-Disguise Attack

	5 Case Study: XAI-based Defense
	6 Countering Explanation-Aware Backdoors
	7 Related work
	8 Conclusion
	Appendix A: Case Study: Android Malware Detection
	A.1 Experimental Setup
	A.2 Red-Herring Attack against Drebin

	Appendix B: Reproducibility and Evaluation Details
	Appendix C: Structural Similarity Index (SSIM)
	Appendix D: Alternative Image Datasets

