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Abstract. Model-agnostic explanation methods provide importance
scores per feature by analyzing a model’s responses to perturbed versions
of the sample to be explained. The explanation’s quality therefore hinges
on the made perturbations and, most importantly, suffers if these lead
to out-of-distribution samples. Unfortunately, this is the case for the
popular LIME explanation method. In this paper, we thus introduce
POMELO, an extension to LIME leveraging generative AI for full-input,
in-distribution sampling. We define key properties of such samplers: dis-
tribution alignment, diversity, and locality. Based on these, we discuss
different neural samplers based on normalizing flows and diffusion models.
Our results demonstrate that neural samplers outperform traditional
perturbation strategies and yield explanations that are better aligned
with human intuition. Supplementary material to our paper is available
at https://intellisec.de/research/pomelo.
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1 Introduction

In recent years, the community has proposed a plethora of techniques for ex-
plaining machine learning models [4, 12, 13, 20, 28, 35, 40, 41, 46, 53]. One of
the most popular and most widely used methods in practice [19] is LIME [35].
As a post-hoc, black-box explanation method LIME operates without access to
the model’s weights, gradients, or its neurons’ activation. Instead, it generates
explanations using only the model’s input-output behavior.

To do so, LIME queries the model’s soft-label probabilities for perturbed
variants of the sample to be explained. Based on these soft-labels and the
binary masks representing the made perturbations, LIME trains an interpretable
surrogate model. Each perturbed sample “misses” certain segments of the original
sample, that is, segments are replaced with a baseline, e.g., a constant value
like gray or black, a blurred patch [11], or the mean value of the segment
(cf. Fig. 1). Unfortunately, these strategies give rise to a fundamental limitation:
the perturbations are out-of-distribution (o.o.d.), and thus, explanations may
capture undefined and/or irrelevant model behavior [16, 17, 33].
⋆ Both authors contributed equally to this research.
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Fig. 1: Perturbed samples generated using different perturbation strategies.

To address this issue, we revise the perturbation strategies of LIME and
propose our extension POMELO that can be thought of as a full-input variant of
LIME. It leverages generative models to generate perturbed but in-distribution
(i.d.) versions for an original sample. In contrast to related work, we allow changes
on the full input, instead of random segments only. Our method thus grounds
explanations on realistic changes, induced by the training distribution, and
produces more interpretable insights into the model’s decision-making process.
As an example of our new, full-input perturbation strategies, Fig. 1 depicts
perturbed samples from a normalizing flow and a diffusion model (cf. Section 2.4)
on the right. The use of full-input perturbations has one crucial advantage over
related work: the generative model “knows” the feature correlations and perturbs
correlated feature together, independent of their spatial position in the image.
With segment-wise replacement, as used in LIME, this is not possible. The
probability that larger features or distributed correlations are replaced together
is low if the segments are picked at random.

We are the first to show how generative AI with full-input perturbations can
be used within the LIME-framework for the complex image domain. However,
other extensions of LIME with similar motivations exist, though: For instance,
Qiu et al. [33] use naive perturbation strategies and weighs the perturbed samples
according to an inlier score when training the surrogate model. Others use
in-painting strategies to fill in the “missing” segments in images [2, 6], or for
anomaly detection on tabular data [48]. Furthermore, one can use Variational
Autoencoders (VAEs) to explain temperature time series forecasting in blast
furnace [39] or Conditional Tabular GANs [52] to enhance LIME’s robustness
against attacks [38].

In summary, we make the following contributions:

– Key Properties of Samplers. We develop a framework that consists of
three key properties of effective full-input samplers: distribution alignment,
diversity and locality. We discuss the trade-offs and relations between the
properties and propose metrics to assess different aspects of them.

– Full-Input Perturbation Strategies for LIME. We demonstrate how
full-input perturbation strategies can be integrated into LIME, giving rise to
our novel approach POMELO. Therefore, we examine two concrete strategies,
one based on normalizing flows and one based on denoising diffusion implicit



POMELO 3

models (DDIMs). Based on the key properties, we compare the resulting
perturbed samples against the traditional LIME perturbation strategies.

– Comprehensive Evaluation. We compare the explanation performance of
our approach against traditional LIME in terms of the explanation quality,
diversity, locality, distribution alignment, and computational feasibility. We
demonstrate that the descriptive accuracy metric is closely aligned with the
used perturbation strategy in the explanation.
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Fig. 2: Overview depiction of POMELO. We replace LIME’s perturbation strate-
gies with an in-distribution full-input sampler and employ a more concise in-
terpretable representation based on the segment-wise ℓ1 distance between the
original sample and the perturbed samples.

2 POMELO

We extend the LIME explanation method as a remedy to the out-of-distribution
(o.o.d.) problem. Our extension, POMELO, replaces the naive perturbation
strategies with more powerful generative approaches, denoted as neural samplers.
This change comes with peculiarities if the perturbations are not limited to
specific segments, a problem we describe and solve in this section.

After introducing our basic notation, we first state the o.o.d. problem in
Section 2.1, and its relation to meaningfulness in Section 2.2. In Section 2.3, we
formalize three key properties a sampler should satisfy. Next, we describe three
concrete perturbation strategies that adhere to these criteria in Section 2.4. We
regard them as proof-of-concepts to demonstrate the benefits of our extension.
In Section 2.5, we introduce our core contribution: how to generate interpretable
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representations from full-input perturbations. And lastly, Section 2.6 describes
how we build explanations from all the above. In Fig. 2, we provide an overview
on the methodology of POMELO.

Notation. Throughout the paper, we consider a classifier Fθ : X → Y, that
maps samples x ∈ X to classes/labels y ∈ Y based on a soft-label Fθ(x) =
argmaxc fθ(x)c. The model’s parameters θ are learned on a training dataset
Dtrain and eventually are validated on a separate dataset Dval. A sampler
S : X → P (X ), where P is the powerset, produces a set of perturbed samples,
and a segmentation algorithm Seg provides a segmentation, given a sample.

2.1 The Out-of-Distribution Problem

LIME employs relatively simple perturbation strategies, such as overwriting
segments/super-pixels with constant values or blurring a segment. These pertur-
bations are supposed to mimic the removal of the respective segment but also
diverge heavily from the real-world distribution. Hence, LIME explanations are
based on o.o.d. samples, not reflecting the model’s real-world decision-making
process in benign environments. A model’s responses to black or gray patches
simply express exactly this; how does the model react to black or gray patches.
We argue, that explaining based on this results in misleading explanations [33].
In adversarial environments, in turn, the fact that LIME uses o.o.d. samples
can even be exploited to bootstrap attacks on the explanation [15, 42]. Training
neural networks to make correct predictions on all samples remains a tricky
problem [16, 17, 29, 47], and thus, LIME explanations do not faithfully explain
a model’s decisions.

2.2 Relating In-Distribution Perturbations and Meaningfulness

Grounding explanations in the model’s data distribution produces more reliable
and interpretable insights. However, it is important to note, that i.d. perturbed
samples are not always semantically meaningful variations of the original sample.
Depending on the data distribution also meaningless but dominant features like
copyright tags on horse images [3, 23] or tags on images of skin cancer [36] are
in-distribution, i.e., neural samplers might produce such features. Fortunately, the
pure existence of such features does not influence the explanation much. Only, if
they are (spuriously) correlated with the model’s soft-labels, the explanation will
pick them up, which is a desirable property. In other words, POMELO explains
the model and the underlying data distribution together.

2.3 Key Properties of Perturbation Strategies

To achieve i.d. perturbed samples, we employ samplers. Given a sample x, a
sampler S : X → P (X ) generates a set of perturbed samples. The perturbed
samples should satisfy three key properties to ensure robust and meaningful
explanations, which we discuss here. Later, in Section 4, we present metrics to
measure to what extent the properties are achieved by our investigated samplers.
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– Distribution Alignment ( DA ). Given an i.d. sample x, the perturbed
samples x̃i should also be i.d.. Formally, a sampler should satisfy x ∼ D ⇒
S(x) =: x̃ ∼ D, where D denotes the true distribution in deployment. For
o.o.d. samples the samplers might generate o.o.d. perturbations. This scenario
equals explaining o.o.d. samples and is left as future work, though.

– Diversity ( D ). The set of perturbed samples should be diverse, exploring
different classes and many facets of the decision surface. Explanations based on
biased samples lead to a skewed view of the model’s decision-making process,
possibly missing influential directions. Therefore, the perturbed samples should
spread in diverse directions and explore all nearby decision boundaries and
the shape of the soft-label surface.

– Locality ( L ). In addition to diversity, perturbed samples should be in the
neighborhood of the original sample. Only so do they remain relevant to the
explained prediction and preserve the semantic of a local explanation method.

Trade-Offs between the Key Properties. The three properties above restrict
each other. Locality and distribution alignment can theoretically be satisfied
simultaneously, e.g., via returning very close perturbed samples or even the
orginal sample itself. In practice, distributions are seldom so spiky that insufficient
variations can be found nearby. In other words, a very spiky distribution would
be a distribution where one sample is absolutely in-distribution but moving it
just an insignificant bit in any direction makes it out-of-distribution. Diversity, in
turn, often requires larger changes and conflicts with locality. Depending on the
shape of the distribution, the diversity could also conflict with the distribution
alignment, e.g., if the distribution is so narrow (almost a line) that the sampler
can only perturb in two directions, not allowing much diversity. Therefore, the
sampler (or its parametrization) must balance the three properties.

While challenging to quantify, we propose to determine the parametrization
by balancing locality with diversity. We provide details on this expensive process
in Appendix B. The trade-offs with distribution alignment, on the other hand,
are of theoretical nature, and depend more on the distribution than on the
parametrization of the sampler.

2.4 Generating In-Distribution Samples

We present two full-input samplers based on normalizing flows [8, 9, 21, 34]
and diffusion models [18, 43, 45]. For comparison, we describe a third sampler
utilizing diffusion-based in-painting similar to RePaint [27]. The training of each
sampler requires access to the training dataset of the model being analyzed, or,
at least, to a similar dataset with a comparable distribution. Note that this is an
additional requirement compared to the naive perturbation strategies of LIME.

Normalizing Flows. Normalizing flows [8, 9, 21, 34] are powerful density
estimators with exact invertibility. Flows are composed out of a sequence of K
parameterized bijective functions flow = fK ◦ · · · ◦f1. This sequence transforms a
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simple base distribution pZ (often Gaussian) into a complex distribution pX , e.g.,
the distribution of realistic images of celebrities. The parameters of the flow are
learned by minimizing the Kullback-Leibler (KL) divergence between the current
distribution of images pX and the desired distribution ptrain, provided by the
training data. Building on this foundation, architectures like Glow [21] achieve
competitive results in image generation on datasets such as CelebA [24], but also
in other applications like lattice field theory [31]. The core benefit of flows is
their exact invertibility, which enables downstream tasks like interpolation and
semantic manipulation, making flows a perfect candidate for POMELO.

By leveraging the latent space of a normalizing flow, we obtain the latent
representation of x ∈ X as z := flow−1(x) ∈ Z. This representation z is then
perturbed to a new point z̃ and mapped back to the input space of images
x̃ := flow(z̃). The perturbation in latent space equals an interpolation between
z and a randomly sampled point z∗ ∼ pZ from the base distribution. Formally,

z̃ = (1− λ)⊙ z+ λ⊙ z∗ with λ ∼ Ndim(Z)(µ, σ) ,

where µ and σ control the locality of the perturbed samples. In Appendix B,
we provide further details on why we set µ to 0.5 and σ to 0.3. While picking
the interpolation factors λ at random is a novel strategy, related work already
suggests that interpolations in Z produce meaningful changes for CelebA [21].

Denoising Diffusion Implicit Models (DDIMs). Diffusion-based models
show exceptional performance in image generation and data augmentation [7, 18]
and, therefore, are a second promising candidate for our aim. More specifically,
we use denoising diffusion implicit models [44]. Compared to earlier denois-
ing diffusion probabilistic models (DDPMs) [18], these implicit models provide
fundamental benefits for our case.

But one step back. From a functional point of view, diffusion models generate
realistic images from pure Gaussian noise. This capability is learned through
reconstructing a sample x0, from a progressively corrupted version xT . By
iteratively predicting and removing the noise over multiple time steps t, the model
gradually refines its output, effectively reversing the corruption process. These two
involved processes are the forward process (x0 → xT ) that introduces noise, and
the reverse process (xT → x0) that denoises the corrupted sample. In denoising
diffusion implicit models (DDIMs), the reverse process can be deterministic,
allowing for an accompanying deterministic forward process (cf. Appendix A).
This configuration allows us to encode a sample as a noisy representation and
reconstructing it with minimal error [7, 44].

Our proposed sampling strategy exploits this advantage of DDIMs. It uses
the deterministic forward process, eventually reaching a noisy but revertible
representation of the sample. Afterward, it follows a slightly probabilistic reverse
process that introduces deviations, eventually resulting in different perturbed
samples of the original sample. The involved randomness can be controlled with a
noise scaling factor η, where η = 1 results in the DDIM reverse process equaling
the probabilistic DDPM reverse process, and η = 0 yields in a fully deterministic
reverse process.
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Fig. 3: Our in-painting methodology. In a multi-step process we combine the
parts for the noisy original image for present patches(forward process from left
to right) and pure noise for missing areas (reverse process, from left to right).

Intuitively our approach generates perturbed samples by adding deterministic
noise, resulting in a noisy version of the original sample that can be exactly
reconstructed by the reverse process. However, by introducing noise in the
reconstruction, we deviate from the original sample, creating a perturbed sample
that is conditioned on the original sample.

In-Painting. An inherent “problem” of the aforementioned perturbation strate-
gies is their tendency to change the entire image. This “problem” is exactly
what POMELO solves. As a reference for our experiments we use diffusion-based
in-painting as a localized but also neural alternative with changes in specific
segments only. In-painting is performed by iteratively merging noisy versions of
the original sample xorig

t into a diffusion process of an initially random masked
intermediate xmask

t . A schematic representation of this process is provided in
Fig. 3. At each step, the merged sample xt is calculated as follows:

xt = M ⊙ xorig
t + (1−M)⊙ xmask

t ,

where the in-painted sample xmask
t is derived using a denoising step of the previous

merged sample xt−1 and the noisy sample xorig
t is generated by applying the

forward process of the DDIM model on the original sample. For the mask M ,
we use the segmentation from LIME and create a random mask by selecting a
subset of the segments, equivalent to LIME’s methodology. To ensure smoother
transitions, we apply a Gaussian blur to the mask, resulting in soft edges around
the in-painted regions. Similarly to the DDIM-based strategy, the noise level can
be controlled by the η parameter and the number of reverse steps.

This approach is closely resembles RePaint [27], but without the iterative
resampling process. We omitted resampling because it is to computationally
expensive when generating hundreds of images per explanation. While resampling
could enhance the semantic consistency of perturbations, we are unable to perform
an extensive evaluation with this method.
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2.5 Interpretable Representations

In contrast to LIME, POMELO’s full-input perturbation strategies produce
global changes, unrestricted by the segmentation. Each segment is perturbed
to some degree and the binary interpretable representation of LIME cannot be
applied (removed/not removed). To maintain a low-dimensional interpretable
feature space for the surrogate model, we quantify the full-input changes in a
per-segment manner. More concretely, we use a real-value interpretable space
based on a distance metric DX in the input space X . Given the segmentation
of the original sample S = Seg(x), we calculate the interpretable representation
r ∈ [0, 1]|S| of a given perturbed sample x̃ as follows: For each segment si ∈ S we
assign a score:

ri = 1− DX (x[si], x̃[si])

maxv DX (x[si],v)
, (1)

where x[si] and x̃[si] are the pixel vectors of the segment si of the original and
the perturbed sample, respectively. For our experiments, we employ the ℓ1-norm
as the distance metric DX . We denote this process of generating an interpretable
representation from the original sample x , a perturbed sample x̃, and the
segmentation S with a minus sign in Fig. 2.

2.6 Generation of Explanations

Based on the interpretable representations we craft an explanation via the
LIME methodology. Given sample x, its segmentation S, and a model θ, we
create a set of perturbed samples and their corresponding representations,
{(x̃1, r1), . . . , (x̃n, rn)}. The perturbed samples are weighted using a kernel
π(x̃i,x), i.e., the cosine similarity between x̃i and x . Next, we collect the
soft-labels fθ(x̃i)c of the winning class c = Fθ(x) for each perturbed sample.
This process results in a dataset consisting of (π(x̃i,x), x̃i, ri, fθ(x̃i)c) tuples,
which are then used to train a linear surrogate model as LIME does, but on
the [0, 1]|S| space instead of the binary {0, 1}|S| space. The resulting surrogate
model approximates the original model in a local neighborhood, and its learned
coefficients represent the contribution of each feature of r (each segment) to the
decision process.

3 Metrics

This section introduces the metrics to evaluate the perturbed samples’ distribu-
tion alignment (Section 3.1), diversity (Section 3.2), and locality (Section 3.3).
Thereafter follow the metrics for the explanation quality, which are reasonability
(Section 3.4), fidelity (Section 3.5), and stability (Section 3.6).

3.1 Measuring Distribution Alignment DA

To evaluate distribution alignment, we embed perturbed samples in the penulti-
mate layer of a pretrained model and apply two o.o.d. detection techniques:
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– Mahalanobis Score. For each validation sample we generate n perturbed
samples, which are embedded using the penultimate layer of a ResNet18 model
trained on the CelebA dataset. We compute the Mahalanobis uncertainty
scores UMD over these embeddings, following Lee et al. [25]. The required class-
conditional Gaussian distributions are estimated using 30,000 training samples
from the CelebA dataset. As references for clearly o.o.d. samples (compared
to CelebA) we use CIFAR-10 images [22] and Gaussian noise embedded in the
same model. We omit to transform the uncertainty scores into binary decisions
(i.d./o.o.d.), and report the raw scores instead.

– UMAP. To gain qualitative insights, we project the above embeddings into a
2D space using uniform manifold approximation and projection (UMAP) [30],
allowing for visual assessment of their alignment with the original distribution.
Following Rousseeuw [37], we use the silhouette score as a quantitative measure.

3.2 Measuring Diversity D

We measure the different aspects of diversity with the two entropy-based metrics.

– Shannon Entropy. First, we asses the hard-label diversity via the Shannon
entropy of the distribution of winning classes induced by the perturbed samples.
A good sampler would produce a uniform distribution, ensuring that the
perturbed samples are diverse and not biased toward one class. Formally, we
measure Ehard as −∑

c∈C p(c) · log p(c), where p(c) is the probability that a
perturbed sample is predicted as class c.

– Differential Shannon Entropy. In addition, we measure the differential
Shannon entropy of the soft-labels. The reasoning behind this is that the
interpretable model is trained on the soft-labels of the predicted class instead
of the hard-labels. Theorically, the differential entropy of the soft-labels is
defined as Esoft := −

∫ 1

0
pdf(s) log pdf(s) ds, where pdf(s) is the probability

density function of the soft-labels. We approximate this formula with 20 bins
via the trapezoidal rule for numerical integration from scikit-learn.

3.3 Measuring Locality L

The locality of the perturbed samples around the original sample is measured
with two metrics: the ℓ2 distance and the structural similarity index (SSIM) [49].
Note that the second measure is specific for the image domain. One might use
any application-specific measures of locality for the domain at hand.

3.4 Measuring Reasonability R

We assess the reasonability of the generated explanations by comparing the
relevant regions identified by the explanations with ground truth annotation masks
from the CelebAMask-HQ dataset [24]. Therefore, we first scale the explanations
to the [0, 1] interval. Then we transform each 0-to-1-scaled explanation r into
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a binary mask of relevant and irrelevant pixels based on a threshold τ via
rτbin := r > τ . Based on the binary mask rτbin and the binary annotation mask a
we define the intersection size as ISτ := ||rτbin ∧ a| |1 and construct three metrics:

– Intersection over Union. First, we measure the Intersection over Union as
IoUτ := ISτ

||rτbin∨a||1 , and the area under the curve as IoU :=
∫ 1

0
IoUτdτ .

– Explanation Mask Recall. Next, we compute the ratio of annotation pixels
covered with relevant pixels and denote this metric as explanation mask recall
and define it as EMRτ := ISdτ

||a||1 and EMR :=
∫ 1

0
EMRτdτ .

– Explanation Mask Precision. Lastly, we measure the explanation mask
precision as EMP τ := ISτ

||rτbin||1 , and EMP analog as the area under the curve.

3.5 Measuring Fidelity F

We assess the fidelity via the descriptive accuracy [50], originally termed as
pixel flipping [4], and later as the deletion/insertion game [32] or very recently
as most-influential first (MIF) [5]. In this work, we use the terms deletion and
insertion game. In the deletion game we start with the original image and “remove”
pixels in the order of descending importance scores in the explanation. In the
insertion game, on the other hand, we start with a baseline image and add pixels
from the original image in the same order. When multiple pixels share the same
importance score, their deletion or insertion order is determined randomly. As
LIME produces homogeneous importance scores within one segment this happens
regularly. To compensate for this randomness we evaluate each explanation 10
times. At each insertion or deletion step the soft-label of the original prediction
is recorded, leading to deletion and insertion graphs, respectively. Based on
these graphs we calculate the bounded area under curve (AUC) at 50% flipped
pixels as AUC50%

del and AUC50%
ins , respectively. For the calculation we apply the

trapezoidal rule for numerical integration from scikit-learn and flip 1 pixel
per step. Because of the computational effort involved in the in-painting baseline
we flip 128 pixels at a time here.

3.6 Measuring Stability S

The stability of explanations assesses how consistent the explanations are in
consecutive runs. Therefore, {r1, r2, . . . , rm} represents a set of m explanations
extracted for a given sample. We compute the mean explanation, denoted as r̄
and then measure the mean distance from r̄:

Stability =
1

n

n∑
i=1

DE(ri, r̄), (2)

where DE(ri, r̄) is a distance metric in the explanation space, e.g., in our experi-
ments it is the ℓ2-distance.
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4 Evaluation

In this section, we first present our experimental setup in Section 4.1. The following
subsections contain our results for the sampler property distribution alignment
(Section 4.2) and the diversity-locality trade-off (Section 4.3). Thereafter follow
the explanation quality metrics reasonablility (Section 4.4), fidelity (Section 4.5),
and stability (Section 4.6).

4.1 Experimental Setup

We evaluated all samplers on the CelebA dataset [26], which contains portrait
images of celebrities. For the reasonability metric, we used the CelebAMask-HQ
dataset [24], which provides annotation masks for a subset of CelebA. We focus
on hair color classification and reduce the classes to blond , black , gray , brown,
and bald , and ignoring samples with ambiguous classification1 [51].

Classification Models. We generate explanations for a ResNet18 [14] classifier
trained to predict the hair color by means of the torchvision library. The
images are scaled to 64× 64 pixel before training with a batch size of 4,096 and a
learning rate of 0.001 for 12 epochs. The model achieves 91% validation accuracy
which is sufficient for our purpose of evaluating an explanation method.

Parametrization of LIME. We configure the LIME algorithm according
to its original implementation, using a cosine similarity kernel with a width of
0.25, and n = 800 perturbations per sample. The segmentation is generated with
simple linear iterative clustering (SLIC) [1] set to 65 segments, which is suitable
for 64× 64 images.

Generative Models. We use the pretrained Generative FLOW (GLOW) model
by Dombrowski et al. [10], the implementation from the diffusers library, and
the author’s public GitHub repository. In addition, we train a DDIM model using
the code provided by the diffusers library on the CelebA training data.

Experiment Design. We analyze explanations for the winning class on 5,000
randomly selected samples from the CelebA dataset. Optimization techniques,
such as reduced floating-point precision and graph compilation, minimize the
computational overhead without compromising performance. The hyperparame-
ters of all components of our work are displayed in Appendix B. If not mentioned
differently, the number of perturbation n is 800 per sample and 5,000 randomly
selected validation samples are evaluated due to resource restrictions. For some
evaluations, the one or the other number is lowered because of computational
restrictions. We always mention such limitations in the respective paragraph.

1 Some samples in the CelebA dataset have two hair colors assigned. These samples
are ignored in our study.
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Table 1: Quantitative results of neural samplers (top) and naive samplers (bottom),
evaluated on their distribution alignment DA , diversity D , and locality L .
Results are presented as the mean and standard deviations, where applicable.

Sampler
DA D L

DM (↓) Sil. (↑) Ehard (↑) Esoft (↑) ℓ2 (↓) SSIM (↑)

Flow 398.32 0.013 1.07±0.43 2.73±0.64 17.13±4.38 0.655±0.064

Diffusion 415.33 0.011 1.48±0.34 2.56±0.56 17.88±4.13 0.552±0.091

In-painting 418.80 0.031 1.08±0.48 2.55±0.74 19.14±5.39 0.578±0.081

Black-Out 717.17 0.578 0.44±0.32 1.21±0.92 39.36±9.58 0.402±0.084

Gray-Out 611.63 0.216 1.20±0.52 2.95±0.87 22.40±4.29 0.564±0.071

Mean 423.31 0.019 0.42±0.48 1.92±1.49 6.80±1.81 0.792±0.048

Blur 496.39 0.055 0.89±0.53 2.61±1.06 13.02±3.00 0.644±0.065

0 5 10
0

5

10

0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10

▲ Flow ▲ Diffusion ▲ In-paint. ▲ Black ▲ Gray ▲ Mean ▲ Blur

Fig. 4: Distribution Alignment DA . The 2D UMAP projections of 500 randomly
selected perturbed samples and 500 training samples (gray circles) based on their
feature embeddings.

4.2 Distribution Alignment DA

At the core of this work we aim to generate i.d. perturbed samples to overcome
the o.o.d. problem in LIME. Here, we evaluate the distributional alignment of the
perturbed samples via the Mahalanobis uncertainty scores [25] of 20 perturbed
samples for each selected validation samples. We compare the scores to other
unperturbed validation samples and two sets of clearly o.o.d. samples: First
CIFAR-10 images [22] and, second, Gaussian noise. In addition, we visualize the
feature space using UMAP [30] to gain qualitative insights.

According to our results in Table 1 the neural samplers achieve uncertainty
scores on par with the validation samples, which reach 413. The flow sampler
performs best (398), followed closely by the diffusion sampler (415) and the
in-painting sampler (418). The perturbations of all three can be considered i.d.
according to these scores. Expectedly, the mean sampler and blur sampler exhibit
slighly worse but comparable performance with 423 and 496, respectively. The
black-out sampler and the gray-out sampler, in turn, generate o.o.d. samples and
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achieve scores of 717 and 611, respectively. Even the clearly o.o.d. CIFAR-10
images achieve an score of 640. The Gaussian noise sets the referenz with 1,388.

In Fig. 4, we provide a 2D UMAP projection of the embedded perturbed
samples. The figure, supports our above finding visually. The flow sampler,
the diffusion sampler, and the in-painting sampler exhibit a close overlap with
the validation samples while the mean sampler and blur sampler show a slight
deviation only. The black-out sampler shows a clear separation, indicating a
strong o.o.d. behavior. Similarly, the gray-out sampler exhibits a vastly different
spread, being more clustered. These results confirm the ability of neural samplers
to produce in-distribution perturbed samples, while traditional samplers induce
a clear out-of-distribution behavior.

4.3 Diversity D and Locality L

Robust, meaningful, and local explanations require a careful balance between
diversity and locality of the perturbed samples. Our evaluation reveals that
neural samplers generally achieve this balance better than traditional samplers.
The diffusion sampler achieves the highest diversity score of 1.48. This superior
performance can be attributed to the ability to induce different class changes.
Traditional samplers may also induce class changes, but in shattered regions of the
decision surface or toward specific classes (cf. next paragraph). The in-painting
sampler exhibits weaker diversity due to its focus on localized perturbations,
hindering consistent full-input changes. Perturbations on the basis of segments
may not expose interactions between segments, e.g., the probability of changing
all hair segments at once is rather low. Among the traditional samplers, the
gray-out sampler performs best. The black-out sampler performs poorly in both,
the locality and the diversity property.

In Fig. 5, we depict the diversity-locality trade-off. The arrows represent the
desired direction. While the mean samplers consistently excels in one property, it
also fails in the other one. Neural samplers make a good trade-off together with
the in-painting, blur, and gray-out sampler. The black-out sampler is worst.
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Fig. 5: The trade-offs between the diversity D and the locality L . The gray
arrows indicate the desired direction.
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Fig. 6: The hard-label distributions of the perturbed samples as a proxy for
diversity D . The black-out sampler shows a strong bias toward black hair.
Neural samplers are depicted in left chunk, the training data in the middle,
and naive samplers on the right.

Analysis of the Label Distributions. We analyze the label distribution
induced by the perturbed samples and compare them to the label distribution of
the training data (cf. Fig. 6). In contrast to diversity, which examines variability in
the perturbed samples at the individual instance level, we take a global perspective
here by evaluating a random subset of all perturbed samples, uncovering broader
patterns. Interestingly, the black-out sampler, in fact, has a bias toward the black
hair class. This bias limits the representational effectiveness of the perturbations,
as it skews them toward a specific label. Such biases can hinder a sampler’s
ability to provide meaningful explanations for certain classes, because it cannot
generate sufficiently diverse or representative perturbed samples for all classes.
This observation aligns with and explains the diversity and locality results of the
black-out sampler.

4.4 Reasonability R

We assess the reasonability of our method POMELO on the basis of annotation
masks from the CelebAMask-HQ dataset. The overlap between these human-
provided annotations and the explanations indicates how well the explanations
align with the human understanding of the problem. We measure this overlap
with three metrics and display the results in Fig. 7. Explanations based on
neural samplers, in particular based on the flow sampler, outperform traditional
LIME explanations in all three metrics, indicating a stronger alignment with
the human-provided masks. In particular, for the intersection over union and the
precision POMELO excels.

This performance might stem from the fact that neural samplers modify
dominant features, such as hair color, eye color, or facial structure, and that
reasonable correlations dominate the training data. Hence, the perturbations are
often consistent with the human-ontological understanding of the data.
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Fig. 7: Reasonability R results for all samplers and a baseline of random expla-
nations. Find the intersection-over-union curve on the left (a), and the precision-
recall curve on the right (b).

Table 2: Quantitative results of the explanation methods for properties reason-
ability R , stability S , and fidelity F . The fidelity is measured as the AUC
with the in-painting replacement strategy for 50% replaced pixels. Results are
presented as the mean with standard deviations, where applicable.

Sampler
R S F

IoU (↑) EMR (↓) EMP (↑) Stab. (↓) AUC50%
del (↓) AUC50%

ins (↑)

Flow 0.240 0.533 0.481 0.030± 0.01 0.311±0.13 0.369±0.105

Diffusion 0.229 0.541 0.451 0.038± 0.01 0.315±0.13 0.372±0.099

In-painting 0.221 0.527 0.432 0.031± 0.01 0.295±0.14 0.392±0.090

Black-Out 0.206 0.537 0.346 0.052± 0.04 0.367±0.11 0.325±0.122

Gray-Out 0.221 0.541 0.392 0.024± 0.02 0.314±0.13 0.372±0.097

Mean 0.171 0.466 0.277 0.004± 0.00 0.364±0.13 0.310±0.112

Blur 0.210 0.525 0.356 0.011± 0.01 0.306±0.14 0.377±0.092

Random 0.189 0.501 0.275 2.155± 0.07 0.409±0.10 0.283±0.117

Reasonability does not assess, however, how well the explanations capture
a model’s actual decision process (cf. Fidelity). For instance, a model might
base its decisions on a-typical patterns and artifacts that are not captured by
human-defined ontology but still are present in the training data, e.g., a copyright
tag on many images of horses [3]. By training the neural sampler on the same
training data, such patterns would also be captured and be highlighted at their
spatial position. Based on the high alignment with the annotation masks and
through the manual investigation of various explanation, we assume that no such
dominate spurious correlations are present in CelebA.
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To make this more clear; If every blond celebrity would have blue eyes, the
neural sampler would only perturb both features together. But, the difference
between the perturbed samples and the original sample would then also be at the
spatial position of the eyes and the hair. Thus, both areas would be hightlighted
as relevant. Our method therefore serves as a helpful debugging tool to find such
spurios correlations with spatial constraints.
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Fig. 8: Results for the deletion game (↓) in the top row and the insertion game
(↑) in the bottom row. The fidelity F depends on the replacement strategy
in the sense that samplers perform best when paired with their corresponding
replacement strategy, highlighted as dashed lines. In the insertion game with an
in-painting replacement strategy the starting point is uncertain as almost the
whole image is generated by the in-painter.

4.5 Fidelity F

With fidelity we measure how well the explanation method captures the model’s
decision process, independently from the human-understanding of the problem.
Therefore, we evaluate the descriptive accuracy in the deletion and insertion
game for different base images. Concretely, our base images are black, gray, the
segment-wise mean of the original image, and the blurred original image. In
addition, we use the in-painting sampler to fill in the deleted parts for the image
based on the remaining information, as already suggested by related work [5].

Fig. 8 depicts the deletion graph (top) and the insertion graph (bottom) for
the respective base images from left to right. In the deletion game a lower curve
represents a better explanation quality, while in the insertion game a higher



POMELO 17

Black-out BlurGray-out
Diffusion In-painting

Mean

Flow

30 50 70 90 110
0
2
4
6

·10−2

S
ta
b
il
it
y

Fig. 9: The stability S (↓) evaluated for a varying number of segments
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Fig. 10: The computational costs C (↓) for generating 1,000 samples in
seconds of wall time across a varying amount of segments between 10 and 70.
Neural samplers are in the left and naive samplers in the right chunk.

curve represents a better explanation quality. Not surprisingly, the perturbation
strategies perform best when paired with their corresponding replacement strate-
gies. This outcome is likely because fidelity aligns directly with the samplers’
objectives: Capturing the model’s behavior when pixels are replaced with the
respective base. The fidelity evaluation effectively tests the explanations with the
same perturbations used in their creation, and consequently inherently favors
the corresponding perturbation strategy strategy.

Due to these limitations of the metric we are hesitate to draw definitive
conclusions from it. Instead, we consider our findings as a strong indication of the
need for different fidelity metrics. These novel metric should more appropriately
assess the performance of various explanation strategies without being biased
toward certain replacement strategies. We argue that the in-painting replacement
strategy is in line with our methodology and captures interactions between
feature, while the other strategies do not. Interactions are the reasons why we
use complex black-box models in the first place and should therefore definetely
be considered in the explanation method as well.
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4.6 Stability S

A stable explanation method facilitates trust in the generated explanations. Neural
samplers can produce a wide variety of perturbed samples, potentially reducing
the stability of explanations. To investigate this, we assess the stability across 80
test sample, each with 5 explanations generated using n = 800 perturbations. We
conduct this analysis across three segmentation counts (30, 70, and 110 segments)
and add randomly generated explanations as a baseline.

Fig. 9 presents the results of our stability study. All samplers outperform
the random baseline by ∼1.5 orders of magnitude. The mean sampler and the
blur sampler dominate the field and generate ∼1, respectively ∼0.5 orders of
magnitude more stable explanation than the other 5 samplers. The commonly used
black-out sampler generates the most instable explanations. Also, while subtle,
we observe a decrease in stability with an increasing number of segments. In
summary, neural sampling achieves competitive stability compared to traditional
approaches within the evaluated context.

4.7 Computational Cost C

Here, we compare the feasibility of generative perturbation strategies based on
the mean wall time for generating 1,000 perturbed samples. The evaluation is
conducted on a compute node with 24 CPU cores (AMD Ryzen 9 5900X) and
a single NVIDIA RTX 3090 Ti GPU. LIME’s default perturbations leverage
multi-threading on all CPU cores, and neural samplers utilize GPU acceleration.

Not surprisingly, neural sampler require more time. However, the flow sampler
demonstrated acceptable performance by taking around 2.5× longer (5 seconds
versus 2 seconds). The DDIM-based strategy, in turn, takes around 35 seconds.
Fortunately, the runtime of neural samplers remains unaffected by the number
of segments used during the perturbation process, while the runtime of naive
sampler increases with the number of segments. This makes POMELO a feasible
solution for large and very segmented input domains. In addition, this property
offers a practical benefit: It allows us to generate explanations with different
segmentations using the same set of generatively-perturbed samples.

5 Conclusion

We address a major limitation of LIME: The used samplers are restricted to
per-segment perturbations, resulting in out-of-distribution (o.o.d.) inputs, and
unavoidably, in misleading explanations. Our extension POMELO uses full-input
perturbations instead, allowing to capture large, complex, or even distributed
correlations. We show that our samplers based on normalizing flows and denoising
diffusion implicit models (DDIMs) exhibit a larger overlap with human-provided
annotation masks. Our method’s ability to utilize full-input, and in-distribution
(i.d.) perturbations benefits explanation quality decisively.
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A Details on the DDIM-based Sampler

The reverse process of a DDIM is given by:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt, t)√

αt

)
+

√
1− αt − σ2

t ϵθ(xt, t) + σtϵt (3)

where σt controls the noise added in the reverse process, αt represents the
cumulative product of noise schedule coefficients, and ϵθ(xt, t) is the predicted
noise at timestep t [44]. The noise schedule σt(η) is defined as:

σt(η) = η

√
1− αt−1

1− αt

√
1− αt

αt−1
(4)

where η = 1 results in the DDIM reverse process equaling the DDPM reverse
process, and η = 0 results in a deterministic reverse process.

Leveraging DDIM for Perturbation Generation. Assuming a deterministic
reverse process (η = 0), the DDIM reverse process equation can be rearranged to
derive the iterative definition of the forward process [7]:

xt+1 =
√
αt+1

(
xt −

√
1− αtϵθ(xt, t)√

αt

)
+

√
1− αt+1ϵθ(xt, t) (5)
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Fig. 11: Schematic of the proposed perturbation pipeline, which utilizes a determin-
istic forward process to generate noisy intermediates, followed by a probabilistic
reverse process to introduce controlled randomness into the reconstruction.

With many forward and reverse steps, this deterministic diffusion process can
faithfully reconstruct x0 with minimal error [44]. To generate an in-distribution
perturbation x′ we first perform n forward-steps and collect the noisy intermedi-
ates x̃i at each timestep. Next perform m = n− i probabilistic (η > 0) reverse
steps starting from the i-th intermediate. This probabilistic nature introduces
randomness into the denoising process, which alters the trajectory at each reverse
step, producing different perturbations even when starting from the same inter-
mediate. In our experiments we always use i = 0, meaning we start the reverse
process from the initial noisy intermediate.

B Hyperparameters

In Table 3, we present the hyperparameters we use in our experiment.
While an extensive grid search was computationally infeasible, we performed

a manual search to find the best hyperparameters for each sampler. We generated
perturbed samples for different samples with different values for the listed hyper-
parameters and selected the best in terms of locality and diversity by inspecting
the resulting perturbed samples.

C Examples

In Fig. 12, we present examples of perturbed samples for the three samplers.

D Additional Reasonability Results

In addition to the IoU and the precision-recall plots in Section 4.4, we present
the plots for the explanation mask recall and the explanation mask precision in
Fig. 13. Generative samplers show au par results with the other baselines in the
precision measure. In the recall measure they outperform traditional samplers.
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Table 3: Hyperparameter settings for our experiments.
Method Hyperparameters

LIME Kernel width = 0.25, Number of perturbations = 800
SLIC Number of segments = 35, Compactness = 10
Traditional Samplers Segment turn off rate = 0.5
Flow Sampler µ = 0.5, σ = 0.3
Diffusion Sampler η = 0.4, n = 50, i = 0, m = 50
Inpainting η = 0.8, n = 50, i = 0, m = 50, Segment turn off rate = 0.75

FlowSampler:

Lower quality perturba-
tions, fast inference

DiffusionSampler:

High-quality perturba-
tions, slow inference

InpaintingSampler:

High-quality local per-
turbations, slow.

Fig. 12: In-distribution perturbations generated using the three proposed in-
distribution sampling strategies.
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Fig. 13: Additional results of the explanation mask recall and precision.
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